Desktop Metal Awarded Million Dollar Project from DoD to Develop Additive Manufacturing Process Producing Cobalt-Free hardmetals

Desktop Metal, a pioneer in large scale manufacturing and turnkey added substance fabricating arrangements, declared today it has been granted Phase I of a long term $2.45 million dollar venture from Department of Defense to build up an advanced Additive Manufacturing measure fit for mass creating without cobalt hardmetals, created by the U.S. Armed force. The organization's Production System™ with Single Pass Jetting , a restrictive AM innovation created by Desktop Metal, will mass assembling complex molded sans co hardmetal parts without tooling and is relied upon to prompt the improvement of a double use innovation with various applications in DoD just as in the regular citizen segment.

This new cycle can possibly change the scene of the carbide hardmetals market which is extended to develop to $24 billion by 2024 and is utilized in double use applications including cutting apparatuses, scraped area and compound safe spouts, parts for the oil and gas division, parts for the substance and material industry, devices utilized in agribusiness and mining, steel industry, purchaser products and outdoor supplies, parts for rough terrain transportation, aviation and safeguard segment, development, and in instruments and kicks the bucket for chip-less materials framing.

The venture is given to Desktop Metal by the U.S. Armed force Contracting Command – Aberdeen, Research Triangle Park, in the interest of U.S. Armed force Research Laboratory to the National Center for Manufacturing Sciences (NCMS) Advanced Manufacturing, Materials and Processes (AMMP) Consortium.

Effective examinations by the U.S. Armed force in building up a novel iron-based nano material as the grid in WC-based hardmetals, supplanting Cobalt, has brought about the advancement of a licensed, novel sans co WC-(Fe-Ni-Zr)- based hardmetals. Pair with the making of this promising new material for business and DoD applications, the ARL has been looking for a practical, high volume measure fit for assembling the new sans co hardmetals into unpredictable, net or close net formed parts without the utilization of any tooling.

Among the goals and requirements of the three-year project include:

Development of a feedstock and binder system for novel cobalt-free hardmetal;

Using the Desktop Metal SPJ process to print a sufficient quantity of components of at least 200,000 parts in one day from a single machine; and

Delivery of a cost analysis for scaling up its advanced SPJ binder jet manufacturing technique to successfully manufacture at least 500,000 prototype pieces.

“The novel Co-free hardmetal grade is expected to yield a high strength, high toughness, high hardness, and high wear resistance material,” said Dr. Nicholas Ku, Materials Engineer, CCDC Army Research Laboratory. “We believe combining this novel material with Desktop Metal’s Single Pass Jetting technology will have major applications not only in the defense sector but also in the commercial sector. Further, we believe this combined method will dramatically improve sustainability, reduce the use of a conflict mineral and provide an environmentally-friendly process to mass produce parts with superior properties.”

Desktop Metal Production System

Made by driving creators of fastener flying and single-pass inkjet innovation, the Desktop Metal Production System is intended to be the quickest method to 3D print metal parts at-scale. The Production System use patent-forthcoming SPJ innovation to accomplish print accelerates to multiple times those of inheritance powder bed combination added substance fabricating advances and convey up to several thousands or even huge number of parts every year at costs serious with traditional assembling. Though regular cover flying uses various carriages and ignores a form box to finish the means needed to print each layer, bi-directional SPJ on the Production System combines these means into the movement of a solitary print carriage, significantly decreasing print time and eliminating squandered movements during printing to increment mechanical productivity.

Dr. Animesh Bose, Vice President of Special Projects for Desktop Metal, and a Fellow of ASM International and APMI International, will fill in as head agent of the three-year venture. With over 40 years of involvement with the preparing of particulate materials, he is the writer of more than 125 distributions in the zone of P/M handling of cutting edge materials, wrote and co-created four books, and innovator or co-creator of more than 12 licenses.

“The success in this project will not only provide the hardmetal community with their eagerly desired Co-free hardmetal solution, but also result in the development of a tool-free processing technique capable of fabricating this class of materials into extremely complex shaped parts at speeds that can rival most other high-volume manufacturing techniques, opening up new horizons in the area of hardmetals and its applications,” said Dr. Bose.

“This effort exemplifies the ability of NCMS and AMMP to link cutting edge technologies of non-traditional defense contractors with government agencies to meet existing needs and requirements,” said NCMS’ CEO Lisa Strama. “We look forward to the lasting impact this initiative will have within AMMP, the Army, and the broader community driving innovative Co-free hardmetal solutions across the services and industry at large.”

About Desktop Metal

Desktop Metal, Inc., based in Burlington, Massachusetts, is accelerating the transformation of manufacturing with an expansive portfolio of 3D printing solutions, from rapid prototyping to mass production. Founded in 2015 by leaders in advanced manufacturing, metallurgy, and robotics, the company is addressing the unmet challenges of speed, cost, and quality to make Additive Manufacturing an essential tool for engineers and manufacturers around the world. Desktop Metal was selected as one of the world’s 30 most promising Technology Pioneers by the World Economic Forum and named to MIT Technology Review’s list of 50 Smartest Companies.

Spotlight

Spotlight

Related News

Smart Factory

PsiQuantum, Mitsubishi UFJ Financial Group and Mitsubishi Chemical Announce Partnership to Design Energy-Efficient Materials on PsiQuantum’s

PsiQuantum | January 30, 2024

PsiQuantum and Mitsubishi UFJ Financial Group announced that they are beginning work with Mitsubishi Chemical Group on a joint project to simulate excited states of photochromic molecules which have widespread industrial and residential potential applications such as the development of smart windows, energy-efficient data storage, solar energy storage and solar cells, and other photoswitching use cases. Qlimate, a PsiQuantum-led initiative that includes MUFG as a partner, focuses on using fault-tolerant quantum computing to crack the most challenging computational problems and accelerate the development of scalable breakthroughs across climate technologies, including more energy-efficient materials. Mitsubishi UFJ Financial Group (MUFG) is committed to supporting the world’s transition to a sustainable future, and to encourage industry access to the most promising breakthrough technologies. By pioneering PsiQuantum’s Qlimate solutions with industry leader Mitsubishi Chemical, MUFG is at the forefront of quantum computing for sustainability. This joint project will determine whether high-accuracy estimates of excited state properties are feasible on early-generation fault-tolerant quantum computers, specifically focusing on diarylethenes used for energy-efficient photoswitching applications. The project will allow Mitsubishi Chemical to gain early insights into how and when fault-tolerant quantum computing can be deployed in support of critical, scalable, sustainable materials. Because predicting the optical properties of materials requires complex analysis of excited states, standard algorithmic techniques for simulating these molecules (such as the Density Functional Theory, or DFT) often produce qualitatively incorrect results. The project will bring together Mitsubishi Chemical’s deep experience of computational chemistry and PsiQuantum’s leading expertise in fault-tolerant quantum computing to push the boundaries of approaching the complex physics in these systems and pave the way to developing new, more powerful energy-efficient photonic materials. Philipp Ernst, Head of Solutions at PsiQuantum, said: “PsiQuantum has dedicated teams who identify, describe and solve complex problem sets with best-in-class quantum algorithms. These are designed specifically to run on fault-tolerant quantum computers and will tackle previously-impossible computational challenges. This partnership will leverage our team’s unique know-how and Mitsubishi Chemical’s expertise in photochromic materials. We are grateful for MUFG’s visionary support in our mission to deploy high-impact quantum computing solutions to fight climate change.” Suguru Azegami, Managing Director, Sustainable Business Division, MUFG said: “We are excited to partner with PsiQuantum and Mitsubishi Chemical on our journey to explore possibilities of quantum computing technologies to solve the imminent global challenge. PsiQuantum’s vision to develop the first utility scale quantum computer before the end of the decade has inspired us, which led our initiative to participate in the Qlimate partnership as the first and sole member from Japan. Mitsubishi Chemical is leading efforts to use the cutting-edge technology to develop next generation materials and we are honored to support the company as its long term financial partner.” Qi Gao, Senior Chief Scientist, Mitsubishi Chemical said: “We are pleased to be part of the partnership and are grateful for MUFG’s support. Mitsubishi Chemical’s over 40 years background in computational chemistry and PsiQuantum’s domain specific knowledge for quantum control is a great fit with the collaboration effort of improving calculation accuracy on quantum device. We hope the partnership will accelerate the innovation of revolutionizing computational studies in chemistry and materials science.” About PsiQuantum PsiQuantum is a private company, founded in 2015 and headquartered in Palo Alto, California. The company’s only mission is to build and deploy the world’s first useful, large-scale quantum computer. Many teams around the world today have demonstrated prototype quantum computing systems, but it is widely accepted that much larger systems are necessary in order to unlock transformational applications across drug discovery, climate technologies, finance, transportation, security & defense and beyond. PsiQuantum’s photonic approach enables rapid scaling via direct leverage of high-volume semiconductor manufacturing and cryogenic infrastructure. The company is partnered with the SLAC National Accelerator Laboratory at Stanford University and Sci-Tech Daresbury in the United Kingdom. About Mitsubishi UFJ Financial Group, Inc. (MUFG) Mitsubishi UFJ Financial Group, Inc. (MUFG) is one of the world’s leading financial groups. Headquartered in Tokyo and with over 360 years of history, MUFG has a global network with approximately 2,000 locations in more than 50 countries. The Group has about 160,000 employees and offers services including commercial banking, trust banking, securities, credit cards, consumer finance, asset management, and leasing. The Group aims to “be the world’s most trusted financial group” through close collaboration among our operating companies and flexibly respond to all of the financial needs of our customers, serving society, and fostering shared and sustainable growth for a better world. MUFG’s shares trade on the Tokyo, Nagoya, and New York stock exchanges. About the Mitsubishi Chemical Group Corporation Mitsubishi Chemical Group Corporation (TSE: 4188) is a specialty materials group with an unwavering commitment to lead with innovative solutions to achieve KAITEKI, the well-being of people and the planet. We bring deep expertise and material science leadership in core market segments such as mobility, digital, medical and food. In this way, we enable industry transformation, technology breakthroughs, and longer, more fruitful lives for us all. Together, around 70,000 employees worldwide provide advanced chemistry-based solutions to deliver the core elements of our slogan — “Science. Value. Life.”

Read More

Manufacturing Technology

MaxLinear Launches Product Design Kit for Active Electrical Cables Using Keystone PAM4 DSP

MaxLinear | February 02, 2024

MaxLinear, Inc. a leading provider of high-speed interconnect ICs enabling data center, metro, and wireless transport networks, announced the availability of a comprehensive product design kit (PDK) to optimize performance and accelerate the time to market for high-speed Active Electrical Cables (AEC) using MaxLinear’s 5nm PAM4 DSP, Keystone. The PDK is a cost-cutting and time-saving tool for cable manufacturers who want to quickly integrate Keystone into their active electrical cables. MaxLinear’s Keystone PAM4 DSP offers a significant power advantage in AEC applications, which is increasingly becoming a critical factor for hyperscale data centers. The use of 5nm CMOS technology enables designers and manufacturers to build high-speed cables that meet the need for low power, highly integrated, high performance interconnect solutions that will drive the next generation of hyperscale cloud networks. Manufacturers taking advantage of MaxLinear’s PDK to optimize cable designs using Keystone PAM4 DSP will gain a distinct advantage over competitor solutions when trying to maximize reach and minimize power consumption. The PDK makes Keystone easy to integrate with strong applications support, multiple tools to optimize and monitor performance, and reference designs (SW and HW) to accelerate integration. Sophisticated software allows for quick design optimization for the lowest possible power consumption and maximizing cable reach. Cable designers can constantly monitor performance, route signals from any port to any port, and take advantage of hitless firmware upgrades. “MaxLinear is focused on providing not only industry-leading interconnect technologies but also a comprehensive suite of tools to support our manufacturing and design partners,” said Drew Guckenberger, Vice President of High Speed Interconnect at MaxLinear. “Our development kit for our Keystone products provides them with a path to take products to market more quickly and more cost-effectively.” Active electrical cables (AECs) are revolutionizing data center connections. Unlike passive cables, they actively boost signals, allowing for longer distances (up to 7 meters for 400G), higher bandwidth, and thinner, lighter cables. This makes them ideal for high-speed applications like top-of-rack connections (connecting switches to servers within the same rack); direct digital control (enabling flexible interconnectivity within racks and across rows); and breakout solutions (splitting high-speed connections into multiple lower-speed channels). The high-speed interconnect market – which includes active optical cables, active electrical cables, direct attach copper cables, and others – is expected to grow to $17.1B by 2028, up from $10.7B in 2021 according to a market forecast report from The Insight Partners. The Keystone Family The Keystone 5nm DSP family caters to 400G and 800G applications, featuring a groundbreaking 106.25Gbps host side electrical I/O, aligning with the line side interface rate. Available variants support single-mode optics (EML and SiPh), multimode optics and Active Electrical Cables (AECs), offering comprehensive solutions with companion TIAs. Host side interfaces cover ethernet rates of 25G, 50G, and 100G per lane over C2M, MR, and LR host channels. The line side interfaces, tailored for 100G/λ DR, FR, and LR applications, also support these rates. These devices boast extensive DSP functionality, encompassing line-side transmitter DPD, TX FIR, receiver FFE, and DFE. With exceptional performance and signal integrity, these DSPs occupy a compact footprint (12mm x 13mm), ideal for next-gen module form-factors like QSFP-DD800 and OSFP800. Additionally, they are available as Known Good Die (KGD) for denser applications, such as OSFP-XD. About MaxLinear, Inc. MaxLinear, Inc. is a leading provider of radio frequency (RF), analog, digital, and mixed-signal integrated circuits for access and connectivity, wired and wireless infrastructure, and industrial and multimarket applications. MaxLinear is headquartered in Carlsbad, California. MaxLinear, the MaxLinear logo, any other MaxLinear trademarks are all property of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved.

Read More

Additive Manufacturing

Teledyne Relays Unveils Innovative Multi-Function Timer Series

Teledyne Relays, Inc. | January 29, 2024

Teledyne Relays, a leading provider of cutting-edge relay solutions, introduces its new Multi-Function Timer product series, showcasing the company's commitment to delivering advanced, reliable, and versatile solutions for the industrial automation sector. Teledyne Relays Multi-Function Timer MFT series is a state-of-the-art solution designed for a wide variety of applications that demand precise timing control. The user-friendly design features three potentiometers for easy selection of timing functions and ranges, while the LEDs provide at-a-glance feedback of timing and relay status. The MFT series also features 7 selectable timing functions for a wide variety of applications Timing ranges from 0.1 seconds up to 100 hours Compact 17.5mm housing preserves valuable panel space Supply Voltages: 24VDC & 24-240VAC OR 12-240VAC/DC 5A SPDT output relay Engineered with the needs of electrical engineers, panel builders, and automation engineers in mind, these timers find application in various industries, including but not limited to Industrial Automation Manufacturing Process Control Systems HVAC and Refrigeration Agriculture and Irrigation Power Distribution “With the new Multi-Function Timer series, Teledyne Relays continues to lead in providing reliable and versatile solutions for industrial automation, ensuring precise timing control,” said Michael Palakian, Vice President of Global Sales and Marketing at Teledyne Relays. The Multi-Function Timer series from Teledyne Relays ensures precise timing control, offering unparalleled reliability across diverse applications and is available for ordering from Teledyne Relays or an authorized distributor. About Teledyne Relays Teledyne Relays is a world leader in high-performance coaxial switches, electromechanical, and solid-state relays, offering a wide range of solutions for various applications in the aerospace and defense, telecommunications, test and measurement, and industrial markets. With over 60 years of experience, Teledyne Relay has established a reputation for quality, reliability, and customer service excellence. About Teledyne Defense Electronics Serving Defense, Space and Commercial sectors worldwide, Teledyne Defense Electronics offers a comprehensive portfolio of highly engineered solutions that meet your most demanding requirements in the harshest environments. Manufacturing both custom and off-the-shelf product offerings, our diverse product lines meet emerging needs for key applications for avionics, energetics, electronic warfare, missiles, radar, satcom, space and test and measurement.

Read More