Wireless AGVs May Prove Most Important ProMatDX Innovation

April 12 -15 ProMatDX, the largest material handling event, will take place virtually.  It will feature dozens of AGV vendors. Sadly, some of these highly innovating products still need to be plugged-in to capture power.  No more.

Wiferion in process charging eliminates the plug-in charging making AGVs truly autonomous. In process charging eliminates the waste of AGV downtime – the fleet is always working AND charging. In process charging is safe ensuring the OSHA, ergonomics, and danger to workers significantly reduced. In process charging is cost-efficient because full vehicle deployment means a reduced fleet count ensuring a rapid ROI.

For OEMs of AGVs and industrial trucks implementing inductive charging technology solves the wear and tear issues caused by conventional charging methods as well as making vehicles fully autonomous. For end-users of AGVs and industrial trucks, inductive charging in combination with lithium batteries can improve fleet availability by more than 30%.

Whether driverless transport systems (AGVs), electric forklifts, or mobile robots (AMRs), the efficient use of industrial trucks is a decisive factor for competitiveness during ever- increasing cost pressures. The energy systems are being scrutinized and lithium-ion batteries are the preferred technology. The advantages versus lead-acid batteries (including the ability to recharge faster and more often) are obvious. Until now the full potential of storage technology has not been fully realized.
Wireless AGVs May Prove Most Important ProMatDX Innovation
© 2021 Wiferion

Benefits of inductive charging solutions
Conventional battery charging concepts with plug-in cables cannot be automated.  Contact sliding chargers are the common but are an unreliable alternative having been designed and developed decades ago. For both, there are often significant investments and maintenance costs required. Inductive charging solutions offer impressive levels of efficiency, flexible integration, and the option of autonomous "in-process charging.” An added benefit is the high degree of flexibility when relocating the charging stations.

© 2021 Wiferion

Intralogistics and inductive charging
The trend towards lithium-ion batteries in intralogistics continues. Almost all large forklift manufacturers now have models with lithium-ion drives.  In the field of driverless transport systems and mobile robots, powerful lithium-ion technology is already standard. Interim charging enables automated 24/7 operations which is critically important with two or three-shift operations at warehouses, distribution centers, 3PLs (third party logistics), and manufacturing facilities.

The extended service life of the batteries reduces operating and maintenance costs in the long term. Commercial vehicles are still frequently charged with wired plug connections, despite the possibility of battery charging during short stops. The charging cables are only connected during longer breaks or after the end of the shift. Without intermediate charging, the batteries’ energy levels drop continuously. 

To offset charging depletion, expensive batteries must be significantly larger, since smaller amounts of energy are regularly recharged. The return on investment (ROI) deteriorates. The higher performance prices of peak loads have an impact when the entire fleet is charged after the end of the shift. Ultimately, wired charging concepts are difficult to automate and the industrial trucks and AGVs are not productive during the charging process. This wasteful downtime of equipment is totally antithetical to all Lean Manufacturing principles.

Replacing battery trays less than optimal
Another approach to energy supply is to replace entire battery trays. Special rooms are required where the exchange takes place. Additional batteries have to be purchased and the replacement process ties up valuable vehicle and personnel capacities. From an occupational health and safety perspective, the battery exchange process is far less optimal.

There are automation concepts in which industrial trucks and AGVs are loaded automatically with sliding connections. Stationary sliding contacts are permanently installed in the warehouse environment and mounted on the vehicles. Automatic intermediate charging is possible, but the solutions are relatively expensive, inflexible, prone to failure, and require structural changes to the infrastructure. This is necessitated to install the sliding contacts and power lines. There are safety risks for employees and high maintenance costs; the care and replacement of the mechanical sliding contacts is unacceptable.
Wireless AGVs May Prove Most Important ProMatDX Innovation
© 2021 Wiferion

High vehicle availability through "in-process charging"
Wireless battery charging systems and energy management solutions circumvent the limitations of conventional charging technologies. Based on the principle of magnetic induction, these technologies automatically transmit high currents fully to industrial trucks and AGVs during the ongoing logistics process.
Wireless AGVs May Prove Most Important ProMatDX Innovation
© 2021 Wiferion
etaLINK3000 by Wiferion
 
With "in-process charging,” the batteries are charged at critical points in the warehouse. The charging process starts with full power in less than a second, so even the shortest downtimes can be used for charging without any significant loss in power conversion.

With an efficiency of 93%, wireless charging systems are as efficient as the most powerful wired charging solutions. Due to the many intermediate charges, the energy level of the batteries remains constant. The same vehicle performance can be maintained with 30% smaller batteries without compromising capacities; the acquisition costs of batteries can be reduced considerably. Since there are often no additional charging breaks, downtime is reduced, and vehicle availability increases by up to 30%.


 
© 2021 Wiferion

Flexible integration possible with wireless charging technologies
The implementation of automation with wireless charging technologies requires no interventions in the warehouse infrastructure. Whether defined parking spaces, on frequently travelled routes or at loading and unloading stations, charging pads can be installed on walls, machines, or on the floor in a few simple steps (and flexibly repositioned when processes and layouts change).

Since inductive charging systems such as etaLINK manage without mechanical sliding contacts, the energy solutions are completely maintenance-free and suitable for long-term continuous use.

Data evaluation for efficient logistics processes
Inductive charging also has numerous advantages in terms of data evaluation. The battery and charging system together form an overall solution for energy supply and are connected via a CAN interface. This means that all data on the energy level, operating times, and vehicle status can be recorded in real-time. Industry 4.0 applications such as condition monitoring or predictive maintenance can be executed. 

Current and future state of inductive battery charging
The many advantages over conventional charging solutions are obvious. Inductive battery charging systems have the potential of becoming the standard for supplying energy to lithium-ion batteries. They are efficient, flexible, scalable, and can be quickly integrated into any warehouse. “In-process charging” enables completely new automation and logistics processes. Users want to reduce costs sustainably and consistently; inductive charging enables an affordable alternative and clear TCO (total cost of ownership).

Wiferion is a finalist for the ProMatDX Innovation Award as Best New Product featuring the etaLINK 3000 - wireless charging system.
About The Author

Julian Seume is the Chief Marketing Officer (CMO) for the German-based inductive wireless power company Wiferion.  He holds a Bachelor in Economics and a Master of Sciences in Business Management. After ten years in international executive positions for machine tool companies he joined Wiferion in 2019 and is responsible for the overall go-to market strategy, the brand development, and all aspects of strategic and operative marketing. Seume believes wireless charging will change the way energy is transferred and that Wiferion will help to electrify the economy.

SPOTLIGHT

Cisco 

OTHER ARTICLES

Lessons Learned in Electronics Transforms Other Discrete Manufacturing Operations

Article | May 10, 2021

Jason Spera, picture left, recently shared his vantage of the changes for factory floor automation in 2021. Jason is CEO and Co-Founder, Aegis Software. Spera is a leader in MES/MOM software platforms for discrete manufacturers with particular expertise in electronics manufacturing. Founded in 1997, today more than 2,200 factory sites worldwide use some form of Aegis software to improve productivity and quality while meeting regulatory, compliance and traceability challenges. Spera's background as a manufacturing engineer in an electronics manufacturing company and the needs he saw in that role led to the creation of the original software products and continue to inform the vision that drives Aegis solutions, like FactoryLogix. He regularly speaks on topics surrounding factory digitization, IIoT, and Industry 4.0. Contact Jason on LinkedIn.

Read More

Top 5 Manufacturing Applications of Machine Vision

Article | October 20, 2021

Machine vision is becoming increasingly prevalent in manufacturing daily across industries. The machine vision manufacturing practice provides image-based automated inspection and analysis for various applications, including automatic inspection, process control, and robot guiding, often found in the manufacturing business. This breakthrough in manufacturing technology enables producers to be more innovative and productive to meet customer expectations and deliver the best products on the market. A renowned industry leader Mr. Matt Mongonce conveyed in an interview with Media7, As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity -Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca. Why is Machine Vision so Critical? The machine vision manufacturing process is entirely automated, with no human intervention on the shop floor. Thus, in a manufacturing process, machine vision adds significant safety and operational benefits. Additionally, it eliminates human contamination in production operations where cleanliness is critical. For instance, the healthcare business cannot afford human contamination in some circumstances to ensure the safety of medicines. Second, the chemical business is prohibited from allowing individuals to come into touch with chemicals for the sake of worker safety. Thus, machine vision is vital in these instances, so it is critical to integrate machine vision systems into your production process. Machine Vision Application Examples To better understand how businesses are utilizing machine vision in production, we will look at five cases. Predictive Upkeep Even a few seconds of production line downtime might result in a significant financial loss in the manufacturing industry. Machine vision systems are used in industrial processes to assist manufacturers in predicting flaws or problems in the production line before the system failure. This machine vision capability enables manufacturing processes to avoid breakdowns or failures in the middle of the manufacturing process. How is FANUC America Corporation Avoiding the Production Line Downtime with ROBOGUIDE and ZDT? FANUC is a United States-based firm that is a market leader in robotics and ROBOMACHINE technology, with over 25 million units deployed worldwide. In addition, the company's professionals have created two products that are pretty popular in the manufacturing industry: ROBOGUIDE and ZDT (Zero Down Time). These two standout products assist manufacturers in developing, monitoring, and managing production line automation. As a result, producers can enhance production, improve quality, and maximize profitability while remaining competitive. Inspection of Packages To ensure the greatest possible quality of products for their target consumer groups, manufacturers must have a method in place that enables them to inspect each corner of their product. Machine vision improves the manufacturing process and inspects each product in detail using an automated procedure. This technology has been used in many industries, including healthcare, automation, and electronics. Manufacturers can detect faults, cracks, or any other defect in the product that is not visible to the naked eye using machine vision systems. The machine vision system detects these faults in the products and transmits the information to the computer, notifying the appropriate person during the manufacturing process. Assembly of Products and Components The application of machine vision to industrial processes involves component assembly to create a complete product from a collection of small components. Automation, electronics manufacturing, healthcare (medicine and medical equipment manufacturing), and others are the industries that utilize the machine vision system in their manufacturing process. Additionally, the machine vision system aids worker safety during the manufacturing process by enhancing existing safety procedures. Defect Elimination Manufacturers are constantly endeavoring to release products that are devoid of flaws or difficulties. However, manually verifying each product is no longer practicable for anybody involved in the manufacturing process, as production counts have risen dramatically in every manufacturing organization. This is where machine vision systems come into play, performing accurate quality inspections and assisting producers in delivering defect-free items to their target clients. Barcode Scanning Earlier in the PCB penalization process, where numerous identical PCBs were made on a single panel, barcodes were used to separate or identify the PCBs manually by humans. This was a time-consuming and error-prone process for the electronics manufacturing industry. This task is subsequently taken over by a machine vision system, in which each circuit is segregated and uniquely identified using a robotics machine or a machine vision system. The high-tech machine vision system "Panel Scan" is one example of a machine vision system that simplifies the PCB tracing procedure. Final Words The use of machine vision in the manufacturing business enables firms to develop more accurate and complete manufacturing processes capable of producing flawless products. Incorporating machine vision into manufacturing becomes a component of advanced manufacturing, which is projected to be the future of manufacturing in 2022. Maintain current production trends and increase your business revenue by offering the highest-quality items using a machine vision system. FAQ What is the difference between computer vision and machine vision? Traditionally, computer vision has been used to automate image processing, but machine vision is applied to real-world interfaces such as a factory line. Where does machine vision come into play? Machine vision is critical in the quality control of any product or manufacturing process. It detects flaws, cracks, or any blemishes in a physical product. Additionally, it can verify the precision and accuracy of any component or part throughout product assembly. What are the fundamental components of a machine vision system? A machine vision system's primary components are lighting, a lens, an image sensor, vision processing, and communications. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What is the difference between computer vision and machine vision?", "acceptedAnswer": { "@type": "Answer", "text": "Traditionally, computer vision has been used to automate image processing, but machine vision is applied to real-world interfaces such as a factory line." } },{ "@type": "Question", "name": "Where does machine vision come into play?", "acceptedAnswer": { "@type": "Answer", "text": "Machine vision is critical in the quality control of any product or manufacturing process. It detects flaws, cracks, or any blemishes in a physical product. Additionally, it can verify the precision and accuracy of any component or part throughout product assembly." } },{ "@type": "Question", "name": "What are the fundamental components of a machine vision system?", "acceptedAnswer": { "@type": "Answer", "text": "A machine vision system's primary components are lighting, a lens, an image sensor, vision processing, and communications." } }] }

Read More

How to Improve Production Scheduling: The 5 Crucial Elements

Article | December 8, 2021

The manufacturing production schedule is a critical aspect that enables the manufacturing business to complete each production activity precisely and on time. Allocating different raw materials, resources, or processes to distinct project phases is called a production schedule. Its goal is to make your manufacturing process as efficient and cost-effective as possible in terms of resources and labor — all while delivering products on schedule. As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity." – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca So, how is the overall production schedule managed? According to businesswire, the global APS (Advanced Production Planning and Scheduling) software market was valued at $1,491.22 million in 2020 and is anticipated to raise $2,941.27 million by 2028 expanding at an 8.86 percent CAGR from 2020 to 2028. Some software and tools are available to assist manufacturing organizations in properly scheduling production planning, including MaxScheduler, TACTIC, MRPeasy, and Gantt charts. Though there are numerous software programs available on the market for production scheduling, the most crucial aspect is determining which elements to consider when planning production. This blog will look at the five most important factors to consider while planning the production schedule. Five Elements to Consider When Scheduling Production As we saw in the introduction, production scheduling is used in the manufacturing process to assign plant and machinery resources, schedule human resources, plan production processes, and purchase materials. So, what are the primary components or stages of this production scheduling process? Let's take a quick look at each of them. Planning to Make the Best Use of the Company's Resources The role of planning in production scheduling is to use the company's resources to maintain a regular production flow. As a result, downtime is decreased, and bottlenecks are minimized, allowing production to be optimized. For production scheduling, two forms of planning can be used: Dynamic Planning: Dynamic planning is carried out under the idea that process stages will alter. So, materials must be ready, but production cannot begin until demand is decided. Static Planning: Static planning is done keeping in mind that all process steps will be completed on schedule and without adjustments. Routing to Determine the Order of Actions A “bill of materials” is used in discrete manufacturing to specify what things are needed and in what quantities. Routing determines the path and sequence of required phases of the process. It may involve in-house operations, but it may also comprise sub-contracted components that must be returned to the production flow for final assembly. Scheduling to Make Use of Predetermined Planning Levels To manufacture products from components or raw materials, scheduling makes use of the previously set planning level. As a result, it is time-dependent and must meet the demand outlined at the planning level. Each department, product, and procedure can have their own unique set of timetables. Sub-schedules for sub-assemblies or mixes and blends may be defined by department-specific master production schedules, utilized at the highest level to define product timeframes. Dispatching to Decide on Immediate Actions Dispatching assigns the following jobs to be done from a subset of the production queue. Dispatching is utilized to make quick decisions. This is in contrast to planning, which involves the planning of future actions. Dispatching is utilized in both pull and push production systems. Execution to Ensure that all Processes are Carried out Correctly Production scheduling must rely on proper execution to ensure that all processes are completed appropriately and in the sequence planned. It requires everyone to know what they are expected to do and when they are expected to do it. Execution requires knowledgeable management decisions, well-trained employees, correct data in the manufacturing plan and schedule, and consistent sales statistics and forecast numbers. All must be present for the organization to carry out its production plan and fulfill orders. How MRPeasy – A Production Scheduling Software Assist Manufacturing Companies in Scheduling Their Production? MRPeasy is a cloud-based material requirements planning (MRP) application explicitly designed for small manufacturing units. Its primary functions are purchase order management, forecasting, and inventory management. This software simplifies the process of scheduling production. It enables you to evaluate all of your anticipated manufacturing orders (MO). The bill of materials (BOM), purchasing, and stocking are all maintained in one location, allowing you to quickly book inventory and increase purchase orders (PO) for acquired parts. MRPeasy enables you to: Obtain all of the detailed information on all of your MOs Consider MOs as a single block or as distinct operations. Drag-and-drop operations and operations to reschedule Calendar or Gantt chart views are available for monitoring scheduled orders. Additionally, you can manage MOs smoothly. With the production planning component, you may create, amend, and update MOs. This app compiles an exhaustive list of all your MOs. You can track their progress based on the status of an order or a part's availability. Additionally, you can search for, filter, and export your MOs. Final Words How to schedule production for your organization requires extensive research, planning, and analysis of overall product demand as well as a grasp of the time required to meet the demand. Production scheduling techniques such as job-based planning, batch method, flow method, and others help develop a productive manufacturing production schedule. Include the elements mentioned above in your manufacturing scheduling to get the best possible benefits, such as better production efficiency, lower production costs, and on-time product delivery for your manufacturing in 2022. FAQ How production planning differ from production scheduler? Production planning and scheduling are often mixed. But there is a difference. Planning decides what and how much work must be done, whereas scheduling specifies who and when the work will be done. What is real-time manufacturing scheduling? Real-Time Scheduling is a production planning, scheduling, and tracking tool that enables manufacturing organizations to improve customer satisfaction and achieve optimal operational performance cost-effectively. How can scheduling be improved? Communication with staff is a great way to improve scheduling. This is true for all businesses, software or otherwise. However, management should not burden employees with ambiguous or unclear communication, and vice versa. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "How production planning differ from production scheduler?", "acceptedAnswer": { "@type": "Answer", "text": "Production planning and scheduling are often mixed. But there is a difference. Planning decides what and how much work must be done, whereas scheduling specifies who and when the work will be done." } },{ "@type": "Question", "name": "What is real-time manufacturing scheduling?", "acceptedAnswer": { "@type": "Answer", "text": "Real-Time Scheduling is a production planning, scheduling, and tracking tool that enables manufacturing organizations to improve customer satisfaction and achieve optimal operational performance cost-effectively." } },{ "@type": "Question", "name": "How can scheduling be improved?", "acceptedAnswer": { "@type": "Answer", "text": "Communication with staff is a great way to improve scheduling. This is true for all businesses, software or otherwise. However, management should not burden employees with ambiguous or unclear communication, and vice versa." } }] }

Read More

Real-Time Data Collection in Manufacturing: Benefits and Techniques

Article | January 12, 2022

Real-time manufacturing analytics enables the manufacturing base to increase its efficiency and overall productivity in a variety of ways. Production data is an effective means of determining the factory's efficiency and identifying areas where it might be more productive. “Without big data analytics, companies are blind and deaf, wandering out onto the web like deer on a freeway.” – Geoffrey Moore, an American Management Consultant and Author Creating a product-specific data collection may assist you in determining and visualizing what needs to be improved and what is doing well. In this article, we'll look at why manufacturing data collection is vital for your organization and how it may help you improve your operations. Why is Manufacturing Data Collection so Critical? Visibility is the key benefit that every manufacturer gets from manufacturing data collection. By collecting real-time data, or what we refer to as "shop floor data," manufacturers better understand how to assess, comprehend, and improve their plant operations. Manufacturers can make informed decisions based on detailed shop floor data. This is why having precise, real-time production data is critical. “According to Allied Market Research, the worldwide manufacturing analytics market was worth $5,950 million in 2018 and is expected to reach $28,443.7 million by 2026, rising at a 16.5% compound annual growth rate between 2019 and 2026.” For modern manufacturers, the advantages of data collection in manufacturing are numerous. The manufacturing industry benefits from production data and data-driven strategy in the following ways. Substantial reduction in downtime by identifying and addressing the root causes of downtime. It increases manufacturing efficiency and productivity by minimizing production bottlenecks. A more robust maintenance routine that is based on real-time alerts and machine circumstances. Improvements in demand forecasting, supplier scoring, waste reduction, and warehouse optimization reduce supply chain costs. Higher-quality goods that are more in line with customers' wishes and demands depending on how they are utilized in the current world. So, after looking at some of the significant benefits of real-time manufacturing analytics, let’s see what type of data is collected from production data tracking. What Sorts of Data May Be Collected for Production Tracking? Downtime: Operators can record or track downtime for jams, cleaning, minor slowdowns, and stoppages, among other causes, with production tracking software. In the latter scenario, downtime accuracy is optimized by removing rounding, human error, and forgotten downtime occurrences. The software also lets you categorize different types of stops. Changeovers: Changeovers can also be manually recorded. However, changeovers tracked by monitoring software provide valuable data points for analysis, considerably reducing the time required for new configurations. Maintenance Failures: Similar to downtime classification, the program assists in tracking the types of maintenance breakdowns and service orders and their possible causes. This may result in cost savings and enable businesses to implement predictive or prescriptive maintenance strategies based on reliable real-time data. Items of Good Quality: This is a fundamental component of production management. Companies can't fulfill requests for delivery on schedule unless they know what's created first quality. Real-time data collection guarantees that these numbers are accurate and orders are filled efficiently. Scrap: For manufacturers, waste is a significant challenge. However, conventional techniques are prone to overlooking scrap parts or documenting them wrong. The production tracking system can record the number and type of errors, allowing for analysis and improvement. Additionally, it can capture rework, rework time, and associated activities. WIP Inventory: Accurate inventory management is critical in production, yet a significant quantity of material may become "invisible" once it is distributed to the floor. Collecting data on the movement and state of work in progress is critical for determining overall efficiency. Production Schedule: Accurate data collection is essential to managing manufacturing orders and assessing operational progress. Customers' requests may not be fulfilled within the specified lead time if out of stock. Shop floor data gathering provides accurate production histories and helps managers fulfill delivery deadlines. Which Real-time Data Collection Techniques Do Manufacturers Employ? Manufacturers frequently employ a wide range of data collection techniques due to the abundance of data sources. Manual data collection and automated data collection are two of the most common data collection methods. Here are a few examples from both methods: IoT: To provide the appropriate information to the right people at the right time with the correct shop floor insight, IoT (Internet of Things) sensor integration is employed. PLC: The integration of PLC (Programmable Logic Controller) is used to measure and regulate manufacturing operations. HMI: It can provide human context to data by integrating line HMI (Human Machine Interface) systems (such as individual shop terminals like touch screens located on factory floor equipment). SCADA: Overarching management of activities with SCADA (Supervisory Control and Data Acquisition) systems. CNC and Other Machines: Integrating CNC and other machines (both new and older types) to keep tabs on production efficiency and machine well-being is a must these days. Final Words One of the most challenging aspects of shop floor management is determining what to measure and what to overlook. The National Institute of Standards and Technology recently conducted a study on assisting manufacturing operations in determining which data to collect from the shop floor.Additionally, you may utilize the manufacturing data set described above to obtain information from your manufacturing facility and use it strategically to improve operations, productivity, efficiency, and total business revenue in the long term. FAQ What is manufacturing analytics? Manufacturing analytics uses operations and event data and technology in the manufacturing business to assure quality, improve performance and yield, lower costs, and optimize supply chains. How is data collected in manufacturing? Data collection from a manufacturing process can be done through manual methods, paperwork, or a production/process management software system.

Read More