Why Manufacturing Companies Must Consider Business Intelligence

BUSINESS_INTELLIGENCE
Do manufacturing businesses require Business Intelligence (BI)? The answer is YES. Manufacturing is one of the most data-intensive businesses, producing massive amounts of data ranging from supply chain management to shop floor scheduling, accounting to shipping and delivery, and more.

All of this information would go to waste if not properly categorized and utilized. Scrutinizing and analyzing your data with business intelligence will help you become a more efficientand productive organization. Your organized data can show you where the gaps or inefficiencies are in your manufacturing process and help you fix it.

Many companies simply are not willing to change or think they are done once they make a change. But the truth is technology, consumer demands, the way we work, human needs and much more are constantly changing.

Michael Walton, Director, Industry Executive at Microsoft

BI has the potential to improve the operations of an organization and transform it into an organized one. According to Finances Online research, more than 46% of organizations are already employing a BI tool as a significant part of their company strategy, and according to Dresner Advisory Services research, 8 in 10 manufacturers who use BI for analytics have seen it function successfully.


How Manufacturing Operations Are Improving with Business Intelligence?

As revealed by the BI statistics above, we can see that business intelligence is critical in manufacturing. To further illustrate how business intelligence supports the manufacturing industry, let's look at some of the business intelligence benefits that are making a difference in the manufacturing industry.


Advances Operational Efficacy

While modern enterprises create massive amounts of data, not all of this data is relevant. Today's business intelligence solutions take all of the data from your organization and transform it into an easily comprehensible and actionable format. It enables you to minimize or fix errors in real-time. Additionally, it helps you to forecast raw material demand and assess procedures along the supply chain to ensure maximum efficiency.


Allows for the Analysis and Monitoring of Financial Operations

Business intelligence solutions provide insight into sales, profit, and loss, raw material utilization and can usually assist you in optimizing resources to increase your return on investment. Understanding your cost-benefit analysis, BI enables you to manage production costs, monitor processes, and improve value chain management.


Assists in the Management of Your Supply Chain

Manufacturing companies engage with various carriers, handling these multiple processes can be complicated. BI enables manufacturing companies to have more accurate control over shipments, costs, and carrier performance by providing visibility into deliveries, freight expenditures, and general supplies.


Contributes to the Reduction of Inventory Expenses and Errors

Overstocks and out-of-stocks are substantial barriers to profitability. Business intelligence can assist you in tracking records over time and location while identifying issues such as product faults, inventory turnover, and margins for particular distributors.


Determines the Efficiency of Equipment

Several factors can cause inefficient production. For example, errors with equipment due to improper installation, maintenance, or frequent downtime can reduce production. So, to keep industrial operations running well, one must monitor these factors.

Manufacturers can maintain their machines' health using data analytics and business intelligence. It provides real-time information about your production lines' status and streamlines production procedures.


How Business Intelligence Helped SKF (SvenskaKullagerfabriken) to Efficiently Plan Their Future Manufacturing

SKF is a key supplier of bearings, seals, mechatronics, and lubrication systems globally. The company posses its headquarter in Sweden and has distributors in over 130 countries.

Due to SKF's extensive worldwide reach and product diversity, they constantly need to forecast market size and demand for their products to modify their future manufacturing. Generally, SKF experts developed and kept their forecasts in traditional and intricate excel files. However, the efforts of maintaining and reconciling disparate studies were excessively high. As a result, SKF used require days to generate a simple demand prediction.

Later, SKF integrated its business data assets into a single system by utilizing business intelligence in production. Following that, they could swiftly begin sharing their data and insights across multiple divisions within their firm. They are now able to aggregate demand estimation fast and does not face cross-departmental issues about data integrity for the vast number of product varieties they manufacture.

This intelligent data management enabled SKF to plan their future production operations efficiently.


Final Words

Business intelligence in manufacturing makes a big difference in the organization's entire operations. Given the benefits of business intelligence in manufacturing, a growing number of manufacturers are implementing it in their operations.

According to Mordor Intelligence, Business Intelligence (BI) Market was worth USD 20.516 billion in 2020 and is anticipated to reach USD 40.50 billion by 2026, growing at a 12% compound annual growth rate throughout the forecast period (2021-2026).

Hence, we may say that the business intelligence is crucial for manufacturing and is booming, thanks to its enormous potential and the numerous benefits it provides to various businesses.


FAQ


Why is business intelligence so important in manufacturing?

Organization intelligence may assist businesses in making better decisions by presenting current and past data within the context of their business. Analysts can use business intelligence to give performance and competitive benchmarking data to help the firm run more smoothly and efficiently.


What value does BI add to manufacturing?

Business intelligence solutions provide insight into sales, profit, and loss, raw material utilization and can usually assist you in optimizing resources to increase your return on investment. Understanding your cost-benefit analysis enables you to manage production costs, monitor processes, and improve value chain management.


What is business intelligence's key objective?

Business intelligence is helpful to assist corporate leaders, business managers, and other operational employees in making more informed business

Spotlight

Artesyn Technologies

Artesyn Technologies was acquired by Emerson Network Power in 2006 and integrated with other acquired companies - including Astec Power and Motorola's Embedded Communications Computing Group - to create the Embedded Computing & Power business of Emerson Network Power.

OTHER ARTICLES

Standardized Machine Language Will Revolutionize the Way We Work with Data

Article | August 4, 2020

Stefaan Motte, Vice President of Materialise’s software department, discusses our ongoing partnerships with other members of the 3D printing community to standardize machine language and bring the value of printer data to users.We may not pay them attention each day, but every time we plug in phone chargers or travel internationally, we are interacting with standardized components. Imagine traveling internationally by train in the mid-1800s. Europe hadn’t introduced standardized railways yet, so workers had to put in extra time and effort to transfer travelers and goods from one train to another at every country border.

Read More

How to Build Supply Chain Resilience and Agility

Article | June 4, 2020

A review of the key elements in supplier management for manufacturers and how Source-to-Pay procurement technology can support the journey towards supply chain resilience and agility in times of crisis. As the COVID-19 pandemic disrupts global supply chains, procurement organizations around the world are scrambling to react. There are many supply chain management lessons to learn from the Covid-19 crisis.

Read More

How IoT in Manufacturing is Changing Business Dynamics

Article | January 8, 2021

The pandemic is considered a catalyst of change. It has forced many industries worldwide to transform and adapt to various digital solutions. A collection of advanced technologies such as IoT, artificial intelligence, machine learning and more have been widely adopted to support innovation-driven growth strategies. Majority of industry leaders are describing these technologies as industry 4.0 revolution. Entrepreneurs from the manufacturing industry are among them. Many novel opportunities in the manufacturing industry are flourishing with the addition of IoT. The idea of digital transformation has become a necessity rather than an add-on cost for companies. Having said that, the manufacturing industry is on the cusp of a revolution—the internet of things revolution! According to IDC, in 2020, the manufacturing industry experienced notable growth, with a CAGR of 12.4%, which forecasts by 2025. The internet of things in manufacturing enabled smart manufacturing, known as Industrial IoT (IIoT). This development introduced transparency of processes, products, assets, resources, connectivity, advanced analytics, automation, and other advanced-manufacturing technologies. The addition, the internet of things in manufacturing gained momentum as it helped companies transform their operations. It benefitted businesses in various aspects such as production efficiency to product customization, improvements in speed to market, service effectiveness, and even in new business model creation. A recent MPI 2020 Industry 4.0 study revealed that 83% of manufacturing leaders consider “industry 4.0 is extremely important” to their companies, and 56% believe that “Industry 4.0 will have a significant impact” in the next five years. This blog will give you an overview of IoT as well as how its impact is influencing and transforming the manufacturing industry. An Overview: The Internet of Things IoT refers to a network of everyday devices, machines, and other objects equipped with computer chips and sensors. It helps in collecting and transmitting data through the internet. There are several applications of IoT in manufacturing like creating digital solutions, security systems, and communication medium or for upgrading manufacturing processes. These implementations are affecting the overall ecosystem of businesses. IoT is not a novel technological concept but it is being widely circulated in the manufacturing industry in the current times. It is now a developing trend and an innovative technology, enabling rapid data flow while providing the ability to monitor and manage processes in real time. What is IoT in manufacturing? IoT in manufacturing refers to the Industrial Internet of Things (IIoT). It includes interconnected sensors, instruments, and devices networked together with computers’ industrial applications, including manufacturing and energy management. Industrial IoT in manufacturing shapes organizations with greater capabilities and connectivity to increase their pace of identifying bottlenecks in processes and manage operations with greater agility. It has been observed that during the pandemic, the IoT in manufacturing has gained prominence because now the goal is to create a completely automated process and turn it into a smart factory for the years to come. Top Use Cases of Internet of Things in Manufacturing Without visibility, there is no accountability. The value of the IoT in manufacturing is rising unprecedentedly after the manufacturing industry faced challenges during the pandemic.The novel applications of IoT in the manufacturing industry offer hope for massive opportunities to enter in the future. The industrial IoT in manufacturing is slowly transferring traditional manufacturing supply chains into dynamic, interconnected systems, helping to change the way products were being made before and ensuring better safety for human operators to a high level. So, how is IoT used in manufacturing? Here are the top three use cases of IoT trends in manufacturing: •Remote monitoring and operations •Predictive maintenance and smart asset management •Autonomous manufacturing Other than this, the need of IoT in manufacturing is also processed by wireless connectivity. Today, IoT depends on low power and long-range, as the Narrowband (NB) standard addresses it. Thus, there are now a host of IoT use cases, including smart metering, asset tracking, logistics tracking, machine monitoring, and more. However, as the comprehensive 5G connectivity is about to enter the technology sphere, there will be a new level of speed, efficiency, and performance, which will help unlock new IoT use cases in the future. A 2020 report from Bloor Research reveals that the future of 5G, edge computing, and IoT are critical enablers for the manufacturing industry. The Role of the Internet of Things in Manufacturing The applications of IoT in the manufacturing industry have been there for a long time. However, the pandemic forced many manufacturing units and factories to adopt the emerging IoT trends in manufacturing to revolutionize the mass production of goods and boost other industries' output. The benefits of the IoT in manufacturing are becoming popular by the day. Whether it’s about gathering data from multiple machines or delivering real-time data to the manager of operations, the results of this are enhanced operational performance and reduced workload. Apart from this, goods are tracked and equipment maintenance is predicted easily. All of these functions, through analysis, help manufacturers to identify factors of failure or malfunction. By knowing about it on time, they can take appropriate actions and measures to overcome them. So, whether it is IoT in car manufacturing, IoT in apparel manufacturing, IoT in automotive manufacturing, or other industries, IoT is booming in every way. Even the companies specialized in making manufacturing machines are following the latest IoT trends in the manufacturing industry. To get more specific about the impact of IoT in the manufacturing industry, here are the most sought-after roles: Quality Level 4.0 Most manufacturers faced difficulties while maintaining quality consistency, as the pandemic forced them to reduce human interaction at work. This aroused complexities in various manufacturing processes. So, by implementing IoT, companies have easily been able to produce good quality products through multiple applications, latest machines, equipment, and tools. In this way, the IIoT’s impact in the manufacturing industry will indeed enhance the quality level of products to manufacture in the future. In addition, as IoT has a mass of applications in manufacturing, it is also facilitating the production rate of products. This is one of the major benefits of IoT. It increases production rate by automatically monitoring the development cycles at each stage. In this way, the quality aspect of a product remains under observation throughout the production process. IoT Enables Power of Prediction Predictive maintenance is a big thing. One of the significant answers to how IoT is being used in manufacturing is that it improves operating efficiencies. It also ensures that factory equipment and other assets are adequately working, which stays a major priority for manufacturers. Even a small malfunction can lead to substantial delays in production, which could delay or even cancel orders. In these situations, IoT technology helps to overcome these challenges. The deployment of wireless sensors throughout the machines can easily help managers detect issues beforehand and resolve them. This shows the power of prediction it provides. The emerging IoT systems supported by wireless technologies have sense-warning signs in equipment that sends data to the maintenance staff so they could proactively repair the equipment. This avoids major delays in future production schedules. In addition, manufacturers could also gain other benefits of IoT by getting safer plant environments and increased equipment life. This is how the Internet of Things is becoming crucial for the manufacturing industry, especially after the pandemic, and is creating possibilities for manufacturing companies to gain predictable revenue in future. Supply Chain Management Emerging applications of IoT in the manufacturing industry are allowing companies to monitor all the events related to supply chain management. It includes shipments of supplies, tracking of transportation services like shipping containers, logistics data, and more. Data analyzed through devices could also help companies improve logistics by finding problem areas and resolving them in no time. Apart from this, IoT devices also eliminate a big chunk of manual documentation related to operations and others with a novel Enterprise Resource Program (ERP). This new invention of the Internet of Things in manufacturing facilitates cross-channel visibility into managerial, financial, and operation departments. Remote Production Control Many manufacturing companies relocated their computational resources to a custom cloud or connected on modern BAAS (backend as a service) or PAAS (platform as a service) platforms. Thanks to the IoT applications that benefitted the manufacturing industry during challenging times in the pandemic. In this case, the data is transmitted to the industrial automation system. In addition, it controls the overall process of machinery as well as production. IoT in steel manufacturing, oil and gas industries, and power generation have already gained benefits from this function of IoT technology. These industries used IoT devices and created a control system distantly. Harley Davidson, Cisco, and GE are some of the finest examples of using IoT in manufacturing. They have set history by reaping the best benefits of the Internet of Things in manufacturing and overcame hurdles bravely during the pandemic. Their IoT-driven manufacturing process achieved a massive production rate in comparison to other industries during the pandemic phase. Cisco developed a “virtual” manufacturing execution system platform (VMES) through leveraging technologies such as the cloud, big data analytics, and the internet of things to gather real-time information from production machines. In the same vein, Harley Davidson and GE connected every asset on the plant floor and production to IoT devices and tracked performance in real-time. They installed 10,000+ sensors that looked after machine operating data, measured temperature, humidity, and air pressure in real-time without any human interaction. So, information obtained through distant control systems provides a much clearer and faster insight into the actual production in the field. It assists staff in analyzing all the data and makes all the operational tasks convenient. This makes the IoT technology a core instrument in ensuring safe automated production, monitoring the workers, and helping staff members to maintain a proper workflow of business. With all that said about IoT’s role in the manufacturing industry, does this mean that the industry is on the edge of leading with IoT? The answer is ‘yes.’ This is proved through some findings that are as follows: • 76% of manufacturers plan to increase their use of smart devices in manufacturing processes in the next two years. • 63% of companies have already implemented IoT technologies into their products, especially after the pandemic, and ready to supply manufacturers globally. • 71% of them believe that IoT will have a significant impact (24%) or impact (47%) on their business over the next five years. The Right Time to Invest Manufacturers globally believe in the power of IoT and have developed the confidence of implementing it now. The idea of smart manufacturing with IoT is to use connectivity technologies such as industrial networks, Wi-Fi, M2M, and more to link factory automation assets, such as production equipment, robots, and more. This also extends to take advantage of end-user apps, such as MES, PLM, ERP, and mobile devices for more active and precise business decision-making. Hence, getting an IoT solution for your manufacturing business is essential, mainly as the pandemic has shifted the paradigm of business operations. To gain IoT’s competitive advantages, considerable investments are necessary for your business to provide your staff with proper working methods. For manufacturers, globally, the IoT’s impact will be seen in every aspect of their business and thus allow them to thrive even in the most difficult of times in the future. Frequently Asked Questions How to implement IoT in manufacturing? There are many factors to be taken into consideration for implementing IoT in manufacturing. However, some of the best are discussed below: • Businesses should invest more at an early stage of planning to understand the needs of their end-users • Introduce digitally forward tools • Identify risk areas of manufacturing • Introduce a broad range of technologies including cellular, Wi-Fi, Lora, and Sigfox as advanced communication system What is IoT in manufacturing? Industrial IoT (IIoT) in manufacturing adds intelligence to manufacturing equipment, processes, and management. It enables smart manufacturing solutions with the help of connected sensors and devices at the network edge. What are the six levels of IoT? The six levels of IoT are as follows: • Device • Resource • Database • Analysis • Application • Controller service What are the types of IoT? The leading types of IoT are: • Low Power Wide Area Networks (LPWANs) • Cellular • Wi-Fi • Bluetooth • Radio Frequency Identification (RFID) • Zigbee. What are the components of IoT? The various components of IoT are: • Sensors/Devices • Connectivity • Data • Analytics • Cloud/server infrastructure • Applications { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "How to implement IoT in manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "There are many factors to be taken into consideration for implementing IoT in manufacturing. However, some of the best are discussed below: Businesses should invest more at an early stage of planning to understand the needs of their end-users Introduce digitally forward tools Identify risk areas of manufacturing Introduce a broad range of technologies including cellular, Wi-Fi, Lora, and Sigfox as advanced communication system" } },{ "@type": "Question", "name": "What is IoT in manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Industrial IoT (IIoT) in manufacturing adds intelligence to manufacturing equipment, processes, and management. It enables smart manufacturing solutions with the help of connected sensors and devices at the network edge." } },{ "@type": "Question", "name": "What are the six levels of IoT?", "acceptedAnswer": { "@type": "Answer", "text": "The six levels of IoT are as follows: Device Resource Database Analysis Application Controller service" } },{ "@type": "Question", "name": "What are the types of IoT?", "acceptedAnswer": { "@type": "Answer", "text": "The leading types of IoT are: Low Power Wide Area Networks (LPWANs) Cellular Wi-Fi Bluetooth Radio Frequency Identification (RFID) Zigbee" } },{ "@type": "Question", "name": "What are the components of IoT?", "acceptedAnswer": { "@type": "Answer", "text": "The various components of IoT are: Sensors/Devices Connectivity Data Analytics Cloud/server infrastructure Applications" } }] }

Read More

Design Engineering Automation for Highly Configurable Products

Article | February 8, 2021

Manufacturers of highly configurable products want to maximize engineering resources. By capturing knowledge and decision-making, the newest best-in-class engineering automation software speeds development of subsequent design iterations. Automating rules for engineer-to-order (ETO) manufacturers configures custom versions; these technologies allow custom products to reach markets faster and with less friction. More compelling proposals, higher quality products, and reduced engineering costs provide a rapid ROI (return on investment). A typical design engineering cycle and common questions

Read More

Spotlight

Artesyn Technologies

Artesyn Technologies was acquired by Emerson Network Power in 2006 and integrated with other acquired companies - including Astec Power and Motorola's Embedded Communications Computing Group - to create the Embedded Computing & Power business of Emerson Network Power.

Related News

Manufacturing Technology

MaxLinear Launches Product Design Kit for Active Electrical Cables Using Keystone PAM4 DSP

MaxLinear | February 02, 2024

MaxLinear, Inc. a leading provider of high-speed interconnect ICs enabling data center, metro, and wireless transport networks, announced the availability of a comprehensive product design kit (PDK) to optimize performance and accelerate the time to market for high-speed Active Electrical Cables (AEC) using MaxLinear’s 5nm PAM4 DSP, Keystone. The PDK is a cost-cutting and time-saving tool for cable manufacturers who want to quickly integrate Keystone into their active electrical cables. MaxLinear’s Keystone PAM4 DSP offers a significant power advantage in AEC applications, which is increasingly becoming a critical factor for hyperscale data centers. The use of 5nm CMOS technology enables designers and manufacturers to build high-speed cables that meet the need for low power, highly integrated, high performance interconnect solutions that will drive the next generation of hyperscale cloud networks. Manufacturers taking advantage of MaxLinear’s PDK to optimize cable designs using Keystone PAM4 DSP will gain a distinct advantage over competitor solutions when trying to maximize reach and minimize power consumption. The PDK makes Keystone easy to integrate with strong applications support, multiple tools to optimize and monitor performance, and reference designs (SW and HW) to accelerate integration. Sophisticated software allows for quick design optimization for the lowest possible power consumption and maximizing cable reach. Cable designers can constantly monitor performance, route signals from any port to any port, and take advantage of hitless firmware upgrades. “MaxLinear is focused on providing not only industry-leading interconnect technologies but also a comprehensive suite of tools to support our manufacturing and design partners,” said Drew Guckenberger, Vice President of High Speed Interconnect at MaxLinear. “Our development kit for our Keystone products provides them with a path to take products to market more quickly and more cost-effectively.” Active electrical cables (AECs) are revolutionizing data center connections. Unlike passive cables, they actively boost signals, allowing for longer distances (up to 7 meters for 400G), higher bandwidth, and thinner, lighter cables. This makes them ideal for high-speed applications like top-of-rack connections (connecting switches to servers within the same rack); direct digital control (enabling flexible interconnectivity within racks and across rows); and breakout solutions (splitting high-speed connections into multiple lower-speed channels). The high-speed interconnect market – which includes active optical cables, active electrical cables, direct attach copper cables, and others – is expected to grow to $17.1B by 2028, up from $10.7B in 2021 according to a market forecast report from The Insight Partners. The Keystone Family The Keystone 5nm DSP family caters to 400G and 800G applications, featuring a groundbreaking 106.25Gbps host side electrical I/O, aligning with the line side interface rate. Available variants support single-mode optics (EML and SiPh), multimode optics and Active Electrical Cables (AECs), offering comprehensive solutions with companion TIAs. Host side interfaces cover ethernet rates of 25G, 50G, and 100G per lane over C2M, MR, and LR host channels. The line side interfaces, tailored for 100G/λ DR, FR, and LR applications, also support these rates. These devices boast extensive DSP functionality, encompassing line-side transmitter DPD, TX FIR, receiver FFE, and DFE. With exceptional performance and signal integrity, these DSPs occupy a compact footprint (12mm x 13mm), ideal for next-gen module form-factors like QSFP-DD800 and OSFP800. Additionally, they are available as Known Good Die (KGD) for denser applications, such as OSFP-XD. About MaxLinear, Inc. MaxLinear, Inc. is a leading provider of radio frequency (RF), analog, digital, and mixed-signal integrated circuits for access and connectivity, wired and wireless infrastructure, and industrial and multimarket applications. MaxLinear is headquartered in Carlsbad, California. MaxLinear, the MaxLinear logo, any other MaxLinear trademarks are all property of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved.

Read More

Smart Factory

PsiQuantum, Mitsubishi UFJ Financial Group and Mitsubishi Chemical Announce Partnership to Design Energy-Efficient Materials on PsiQuantum’s

PsiQuantum | January 30, 2024

PsiQuantum and Mitsubishi UFJ Financial Group announced that they are beginning work with Mitsubishi Chemical Group on a joint project to simulate excited states of photochromic molecules which have widespread industrial and residential potential applications such as the development of smart windows, energy-efficient data storage, solar energy storage and solar cells, and other photoswitching use cases. Qlimate, a PsiQuantum-led initiative that includes MUFG as a partner, focuses on using fault-tolerant quantum computing to crack the most challenging computational problems and accelerate the development of scalable breakthroughs across climate technologies, including more energy-efficient materials. Mitsubishi UFJ Financial Group (MUFG) is committed to supporting the world’s transition to a sustainable future, and to encourage industry access to the most promising breakthrough technologies. By pioneering PsiQuantum’s Qlimate solutions with industry leader Mitsubishi Chemical, MUFG is at the forefront of quantum computing for sustainability. This joint project will determine whether high-accuracy estimates of excited state properties are feasible on early-generation fault-tolerant quantum computers, specifically focusing on diarylethenes used for energy-efficient photoswitching applications. The project will allow Mitsubishi Chemical to gain early insights into how and when fault-tolerant quantum computing can be deployed in support of critical, scalable, sustainable materials. Because predicting the optical properties of materials requires complex analysis of excited states, standard algorithmic techniques for simulating these molecules (such as the Density Functional Theory, or DFT) often produce qualitatively incorrect results. The project will bring together Mitsubishi Chemical’s deep experience of computational chemistry and PsiQuantum’s leading expertise in fault-tolerant quantum computing to push the boundaries of approaching the complex physics in these systems and pave the way to developing new, more powerful energy-efficient photonic materials. Philipp Ernst, Head of Solutions at PsiQuantum, said: “PsiQuantum has dedicated teams who identify, describe and solve complex problem sets with best-in-class quantum algorithms. These are designed specifically to run on fault-tolerant quantum computers and will tackle previously-impossible computational challenges. This partnership will leverage our team’s unique know-how and Mitsubishi Chemical’s expertise in photochromic materials. We are grateful for MUFG’s visionary support in our mission to deploy high-impact quantum computing solutions to fight climate change.” Suguru Azegami, Managing Director, Sustainable Business Division, MUFG said: “We are excited to partner with PsiQuantum and Mitsubishi Chemical on our journey to explore possibilities of quantum computing technologies to solve the imminent global challenge. PsiQuantum’s vision to develop the first utility scale quantum computer before the end of the decade has inspired us, which led our initiative to participate in the Qlimate partnership as the first and sole member from Japan. Mitsubishi Chemical is leading efforts to use the cutting-edge technology to develop next generation materials and we are honored to support the company as its long term financial partner.” Qi Gao, Senior Chief Scientist, Mitsubishi Chemical said: “We are pleased to be part of the partnership and are grateful for MUFG’s support. Mitsubishi Chemical’s over 40 years background in computational chemistry and PsiQuantum’s domain specific knowledge for quantum control is a great fit with the collaboration effort of improving calculation accuracy on quantum device. We hope the partnership will accelerate the innovation of revolutionizing computational studies in chemistry and materials science.” About PsiQuantum PsiQuantum is a private company, founded in 2015 and headquartered in Palo Alto, California. The company’s only mission is to build and deploy the world’s first useful, large-scale quantum computer. Many teams around the world today have demonstrated prototype quantum computing systems, but it is widely accepted that much larger systems are necessary in order to unlock transformational applications across drug discovery, climate technologies, finance, transportation, security & defense and beyond. PsiQuantum’s photonic approach enables rapid scaling via direct leverage of high-volume semiconductor manufacturing and cryogenic infrastructure. The company is partnered with the SLAC National Accelerator Laboratory at Stanford University and Sci-Tech Daresbury in the United Kingdom. About Mitsubishi UFJ Financial Group, Inc. (MUFG) Mitsubishi UFJ Financial Group, Inc. (MUFG) is one of the world’s leading financial groups. Headquartered in Tokyo and with over 360 years of history, MUFG has a global network with approximately 2,000 locations in more than 50 countries. The Group has about 160,000 employees and offers services including commercial banking, trust banking, securities, credit cards, consumer finance, asset management, and leasing. The Group aims to “be the world’s most trusted financial group” through close collaboration among our operating companies and flexibly respond to all of the financial needs of our customers, serving society, and fostering shared and sustainable growth for a better world. MUFG’s shares trade on the Tokyo, Nagoya, and New York stock exchanges. About the Mitsubishi Chemical Group Corporation Mitsubishi Chemical Group Corporation (TSE: 4188) is a specialty materials group with an unwavering commitment to lead with innovative solutions to achieve KAITEKI, the well-being of people and the planet. We bring deep expertise and material science leadership in core market segments such as mobility, digital, medical and food. In this way, we enable industry transformation, technology breakthroughs, and longer, more fruitful lives for us all. Together, around 70,000 employees worldwide provide advanced chemistry-based solutions to deliver the core elements of our slogan — “Science. Value. Life.”

Read More

Additive Manufacturing

Teledyne Relays Unveils Innovative Multi-Function Timer Series

Teledyne Relays, Inc. | January 29, 2024

Teledyne Relays, a leading provider of cutting-edge relay solutions, introduces its new Multi-Function Timer product series, showcasing the company's commitment to delivering advanced, reliable, and versatile solutions for the industrial automation sector. Teledyne Relays Multi-Function Timer MFT series is a state-of-the-art solution designed for a wide variety of applications that demand precise timing control. The user-friendly design features three potentiometers for easy selection of timing functions and ranges, while the LEDs provide at-a-glance feedback of timing and relay status. The MFT series also features 7 selectable timing functions for a wide variety of applications Timing ranges from 0.1 seconds up to 100 hours Compact 17.5mm housing preserves valuable panel space Supply Voltages: 24VDC & 24-240VAC OR 12-240VAC/DC 5A SPDT output relay Engineered with the needs of electrical engineers, panel builders, and automation engineers in mind, these timers find application in various industries, including but not limited to Industrial Automation Manufacturing Process Control Systems HVAC and Refrigeration Agriculture and Irrigation Power Distribution “With the new Multi-Function Timer series, Teledyne Relays continues to lead in providing reliable and versatile solutions for industrial automation, ensuring precise timing control,” said Michael Palakian, Vice President of Global Sales and Marketing at Teledyne Relays. The Multi-Function Timer series from Teledyne Relays ensures precise timing control, offering unparalleled reliability across diverse applications and is available for ordering from Teledyne Relays or an authorized distributor. About Teledyne Relays Teledyne Relays is a world leader in high-performance coaxial switches, electromechanical, and solid-state relays, offering a wide range of solutions for various applications in the aerospace and defense, telecommunications, test and measurement, and industrial markets. With over 60 years of experience, Teledyne Relay has established a reputation for quality, reliability, and customer service excellence. About Teledyne Defense Electronics Serving Defense, Space and Commercial sectors worldwide, Teledyne Defense Electronics offers a comprehensive portfolio of highly engineered solutions that meet your most demanding requirements in the harshest environments. Manufacturing both custom and off-the-shelf product offerings, our diverse product lines meet emerging needs for key applications for avionics, energetics, electronic warfare, missiles, radar, satcom, space and test and measurement.

Read More

Manufacturing Technology

MaxLinear Launches Product Design Kit for Active Electrical Cables Using Keystone PAM4 DSP

MaxLinear | February 02, 2024

MaxLinear, Inc. a leading provider of high-speed interconnect ICs enabling data center, metro, and wireless transport networks, announced the availability of a comprehensive product design kit (PDK) to optimize performance and accelerate the time to market for high-speed Active Electrical Cables (AEC) using MaxLinear’s 5nm PAM4 DSP, Keystone. The PDK is a cost-cutting and time-saving tool for cable manufacturers who want to quickly integrate Keystone into their active electrical cables. MaxLinear’s Keystone PAM4 DSP offers a significant power advantage in AEC applications, which is increasingly becoming a critical factor for hyperscale data centers. The use of 5nm CMOS technology enables designers and manufacturers to build high-speed cables that meet the need for low power, highly integrated, high performance interconnect solutions that will drive the next generation of hyperscale cloud networks. Manufacturers taking advantage of MaxLinear’s PDK to optimize cable designs using Keystone PAM4 DSP will gain a distinct advantage over competitor solutions when trying to maximize reach and minimize power consumption. The PDK makes Keystone easy to integrate with strong applications support, multiple tools to optimize and monitor performance, and reference designs (SW and HW) to accelerate integration. Sophisticated software allows for quick design optimization for the lowest possible power consumption and maximizing cable reach. Cable designers can constantly monitor performance, route signals from any port to any port, and take advantage of hitless firmware upgrades. “MaxLinear is focused on providing not only industry-leading interconnect technologies but also a comprehensive suite of tools to support our manufacturing and design partners,” said Drew Guckenberger, Vice President of High Speed Interconnect at MaxLinear. “Our development kit for our Keystone products provides them with a path to take products to market more quickly and more cost-effectively.” Active electrical cables (AECs) are revolutionizing data center connections. Unlike passive cables, they actively boost signals, allowing for longer distances (up to 7 meters for 400G), higher bandwidth, and thinner, lighter cables. This makes them ideal for high-speed applications like top-of-rack connections (connecting switches to servers within the same rack); direct digital control (enabling flexible interconnectivity within racks and across rows); and breakout solutions (splitting high-speed connections into multiple lower-speed channels). The high-speed interconnect market – which includes active optical cables, active electrical cables, direct attach copper cables, and others – is expected to grow to $17.1B by 2028, up from $10.7B in 2021 according to a market forecast report from The Insight Partners. The Keystone Family The Keystone 5nm DSP family caters to 400G and 800G applications, featuring a groundbreaking 106.25Gbps host side electrical I/O, aligning with the line side interface rate. Available variants support single-mode optics (EML and SiPh), multimode optics and Active Electrical Cables (AECs), offering comprehensive solutions with companion TIAs. Host side interfaces cover ethernet rates of 25G, 50G, and 100G per lane over C2M, MR, and LR host channels. The line side interfaces, tailored for 100G/λ DR, FR, and LR applications, also support these rates. These devices boast extensive DSP functionality, encompassing line-side transmitter DPD, TX FIR, receiver FFE, and DFE. With exceptional performance and signal integrity, these DSPs occupy a compact footprint (12mm x 13mm), ideal for next-gen module form-factors like QSFP-DD800 and OSFP800. Additionally, they are available as Known Good Die (KGD) for denser applications, such as OSFP-XD. About MaxLinear, Inc. MaxLinear, Inc. is a leading provider of radio frequency (RF), analog, digital, and mixed-signal integrated circuits for access and connectivity, wired and wireless infrastructure, and industrial and multimarket applications. MaxLinear is headquartered in Carlsbad, California. MaxLinear, the MaxLinear logo, any other MaxLinear trademarks are all property of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved.

Read More

Smart Factory

PsiQuantum, Mitsubishi UFJ Financial Group and Mitsubishi Chemical Announce Partnership to Design Energy-Efficient Materials on PsiQuantum’s

PsiQuantum | January 30, 2024

PsiQuantum and Mitsubishi UFJ Financial Group announced that they are beginning work with Mitsubishi Chemical Group on a joint project to simulate excited states of photochromic molecules which have widespread industrial and residential potential applications such as the development of smart windows, energy-efficient data storage, solar energy storage and solar cells, and other photoswitching use cases. Qlimate, a PsiQuantum-led initiative that includes MUFG as a partner, focuses on using fault-tolerant quantum computing to crack the most challenging computational problems and accelerate the development of scalable breakthroughs across climate technologies, including more energy-efficient materials. Mitsubishi UFJ Financial Group (MUFG) is committed to supporting the world’s transition to a sustainable future, and to encourage industry access to the most promising breakthrough technologies. By pioneering PsiQuantum’s Qlimate solutions with industry leader Mitsubishi Chemical, MUFG is at the forefront of quantum computing for sustainability. This joint project will determine whether high-accuracy estimates of excited state properties are feasible on early-generation fault-tolerant quantum computers, specifically focusing on diarylethenes used for energy-efficient photoswitching applications. The project will allow Mitsubishi Chemical to gain early insights into how and when fault-tolerant quantum computing can be deployed in support of critical, scalable, sustainable materials. Because predicting the optical properties of materials requires complex analysis of excited states, standard algorithmic techniques for simulating these molecules (such as the Density Functional Theory, or DFT) often produce qualitatively incorrect results. The project will bring together Mitsubishi Chemical’s deep experience of computational chemistry and PsiQuantum’s leading expertise in fault-tolerant quantum computing to push the boundaries of approaching the complex physics in these systems and pave the way to developing new, more powerful energy-efficient photonic materials. Philipp Ernst, Head of Solutions at PsiQuantum, said: “PsiQuantum has dedicated teams who identify, describe and solve complex problem sets with best-in-class quantum algorithms. These are designed specifically to run on fault-tolerant quantum computers and will tackle previously-impossible computational challenges. This partnership will leverage our team’s unique know-how and Mitsubishi Chemical’s expertise in photochromic materials. We are grateful for MUFG’s visionary support in our mission to deploy high-impact quantum computing solutions to fight climate change.” Suguru Azegami, Managing Director, Sustainable Business Division, MUFG said: “We are excited to partner with PsiQuantum and Mitsubishi Chemical on our journey to explore possibilities of quantum computing technologies to solve the imminent global challenge. PsiQuantum’s vision to develop the first utility scale quantum computer before the end of the decade has inspired us, which led our initiative to participate in the Qlimate partnership as the first and sole member from Japan. Mitsubishi Chemical is leading efforts to use the cutting-edge technology to develop next generation materials and we are honored to support the company as its long term financial partner.” Qi Gao, Senior Chief Scientist, Mitsubishi Chemical said: “We are pleased to be part of the partnership and are grateful for MUFG’s support. Mitsubishi Chemical’s over 40 years background in computational chemistry and PsiQuantum’s domain specific knowledge for quantum control is a great fit with the collaboration effort of improving calculation accuracy on quantum device. We hope the partnership will accelerate the innovation of revolutionizing computational studies in chemistry and materials science.” About PsiQuantum PsiQuantum is a private company, founded in 2015 and headquartered in Palo Alto, California. The company’s only mission is to build and deploy the world’s first useful, large-scale quantum computer. Many teams around the world today have demonstrated prototype quantum computing systems, but it is widely accepted that much larger systems are necessary in order to unlock transformational applications across drug discovery, climate technologies, finance, transportation, security & defense and beyond. PsiQuantum’s photonic approach enables rapid scaling via direct leverage of high-volume semiconductor manufacturing and cryogenic infrastructure. The company is partnered with the SLAC National Accelerator Laboratory at Stanford University and Sci-Tech Daresbury in the United Kingdom. About Mitsubishi UFJ Financial Group, Inc. (MUFG) Mitsubishi UFJ Financial Group, Inc. (MUFG) is one of the world’s leading financial groups. Headquartered in Tokyo and with over 360 years of history, MUFG has a global network with approximately 2,000 locations in more than 50 countries. The Group has about 160,000 employees and offers services including commercial banking, trust banking, securities, credit cards, consumer finance, asset management, and leasing. The Group aims to “be the world’s most trusted financial group” through close collaboration among our operating companies and flexibly respond to all of the financial needs of our customers, serving society, and fostering shared and sustainable growth for a better world. MUFG’s shares trade on the Tokyo, Nagoya, and New York stock exchanges. About the Mitsubishi Chemical Group Corporation Mitsubishi Chemical Group Corporation (TSE: 4188) is a specialty materials group with an unwavering commitment to lead with innovative solutions to achieve KAITEKI, the well-being of people and the planet. We bring deep expertise and material science leadership in core market segments such as mobility, digital, medical and food. In this way, we enable industry transformation, technology breakthroughs, and longer, more fruitful lives for us all. Together, around 70,000 employees worldwide provide advanced chemistry-based solutions to deliver the core elements of our slogan — “Science. Value. Life.”

Read More

Additive Manufacturing

Teledyne Relays Unveils Innovative Multi-Function Timer Series

Teledyne Relays, Inc. | January 29, 2024

Teledyne Relays, a leading provider of cutting-edge relay solutions, introduces its new Multi-Function Timer product series, showcasing the company's commitment to delivering advanced, reliable, and versatile solutions for the industrial automation sector. Teledyne Relays Multi-Function Timer MFT series is a state-of-the-art solution designed for a wide variety of applications that demand precise timing control. The user-friendly design features three potentiometers for easy selection of timing functions and ranges, while the LEDs provide at-a-glance feedback of timing and relay status. The MFT series also features 7 selectable timing functions for a wide variety of applications Timing ranges from 0.1 seconds up to 100 hours Compact 17.5mm housing preserves valuable panel space Supply Voltages: 24VDC & 24-240VAC OR 12-240VAC/DC 5A SPDT output relay Engineered with the needs of electrical engineers, panel builders, and automation engineers in mind, these timers find application in various industries, including but not limited to Industrial Automation Manufacturing Process Control Systems HVAC and Refrigeration Agriculture and Irrigation Power Distribution “With the new Multi-Function Timer series, Teledyne Relays continues to lead in providing reliable and versatile solutions for industrial automation, ensuring precise timing control,” said Michael Palakian, Vice President of Global Sales and Marketing at Teledyne Relays. The Multi-Function Timer series from Teledyne Relays ensures precise timing control, offering unparalleled reliability across diverse applications and is available for ordering from Teledyne Relays or an authorized distributor. About Teledyne Relays Teledyne Relays is a world leader in high-performance coaxial switches, electromechanical, and solid-state relays, offering a wide range of solutions for various applications in the aerospace and defense, telecommunications, test and measurement, and industrial markets. With over 60 years of experience, Teledyne Relay has established a reputation for quality, reliability, and customer service excellence. About Teledyne Defense Electronics Serving Defense, Space and Commercial sectors worldwide, Teledyne Defense Electronics offers a comprehensive portfolio of highly engineered solutions that meet your most demanding requirements in the harshest environments. Manufacturing both custom and off-the-shelf product offerings, our diverse product lines meet emerging needs for key applications for avionics, energetics, electronic warfare, missiles, radar, satcom, space and test and measurement.

Read More

Events