US: Manufacturing On The Path To Recession

JAMES KNIGHTLEY| June 25, 2019
US: MANUFACTURING ON THE PATH TO RECESSION
Intensifying trade war fears and an inventory overhang are weighing on the manufacturing sector. Regional surveys suggest the national ISM manufacturing index will fall below the breakeven 50 level on Monday, which will only heighten fears of recession for the sector.

Spotlight

ASHIDA Electronics

ASHIDA Electronics Pvt Ltd established in 1970, is based in Thane near Mumbai. ASHIDA has patented most of it's equipments. It is the first company in India to develop a range of static and numerical relays indigenously. The company has obtained ISO 9001:2008 certifications from M/s. BVQI, U.K.

OTHER ARTICLES

Lessons Learned in Electronics Transforms Other Discrete Manufacturing Operations

Article | May 10, 2021

Jason Spera, picture left, recently shared his vantage of the changes for factory floor automation in 2021. Jason is CEO and Co-Founder, Aegis Software. Spera is a leader in MES/MOM software platforms for discrete manufacturers with particular expertise in electronics manufacturing. Founded in 1997, today more than 2,200 factory sites worldwide use some form of Aegis software to improve productivity and quality while meeting regulatory, compliance and traceability challenges. Spera's background as a manufacturing engineer in an electronics manufacturing company and the needs he saw in that role led to the creation of the original software products and continue to inform the vision that drives Aegis solutions, like FactoryLogix. He regularly speaks on topics surrounding factory digitization, IIoT, and Industry 4.0. Contact Jason on LinkedIn.

Read More

Five Lean Manufacturing Principles to Empower Your Manufacturing Business

Article | December 16, 2021

Lean manufacturing is an operational approach used to create value. Businesses adopt lean manufacturing to improve productivity, reduce waste, increase customer value, and employee satisfaction. Many businesses are accelerating their adoption of lean principles and practices due to the emergence of the industry 4.0 transformation. As a result, companies such as Caterpillar, Intel, Textron, Parker Hannifin, and John Deere are all reaping the benefits of lean manufacturing. So, where did the idea of "lean manufacturing" first originate? In this article, you'll learn about the origins of lean manufacturing and its key principles. The Origins of Lean Manufacturing The principles of lean manufacturing were developed in Japan in the mid-20th century. Toyota, a famous Japanese automaker, experienced major delivery issues at the time. Its production chains were excessively long; thus it couldn't supply enough products on time. As a result, Toyota needed a new Performance measurement system. The company's managers identified a solution. They created a new project management method called the Toyota production system. Its basic idea was to improve product distribution by reducing waste. It was a good concept. It helped the company shorten manufacturing chains and deliver products faster. Toyota's production method created a simple and effective waste definition. Any step that did not improve the end product's functionality was called a waste. Later, other manufacturing industries adopted the system. It was renamed as lean manufacturing. It's now a global phenomenon and is used by large and small businesses worldwide. When should you implement the Lean Manufacturing Method in your business? Lean is a waste-reduction methodology, approach, and a lifestyle. While it is commonly used in manufacturing, lean techniques are applied to reduce waste while keeping high quality in any business. Waste reduction of 80% plus Reduced production expenses by 50% Decreased inventories by 80-90% Producing quality items is 90% less expensive. Workforce productivity improved by 50% If you want your business to get the above benefits, you need to adopt lean manufacturing principles. Five lean Manufacturing Principles Lean manufacturing benefits businesses in multiple ways, and this lean lifestyle has the potential to empower any organization and increase its market competitiveness. So, let us observe the five fundamental principles of lean manufacturing. Value For the first principle of defining customer value, it is vital to understand what value is. For customers, value comes from what they're willing to pay for. The customer's actual or hidden demands must be discovered. Customers are not aware of what they want or cannot express it. When it comes to new items or technologies, this is a regular occurrence. Assume nothing; ask about the pain points being experienced and then craft a unique value proposition. Never force a solution into a problem that does not exist.” – Thomas R. Cutler, President & CEO at TR Cutler, Inc. For example, you can use various methods to find out what customers value, such as surveys and demographic information. With these qualitative and quantitative methodologies, you may learn more about your clients' needs, their expectations, and their budgets. Value-Stream Identifying and mapping the value stream is the second lean principle. By starting with the consumer’s perceived value, all activities that contribute to that value may be identified. Waste is anything that does not benefit the client in any way. It can be divided into two categories: non-value-added and unnecessary waste. The unnecessary waste should be removed, while the non-value-added should be minimized. You can ensure that clients get exactly what they want while minimizing the cost of creating that product or service by removing unnecessary processes or steps. Flow The next operations must proceed smoothly and without interruption or delays after removing wastes from the value stream. Value-adding activities can be improved by breaking down tasks, reorganizing the manufacturing process, distributing the workload, and educating personnel to be flexible and multi-skilled. Pull The fourth lean principle requires a pull-based manufacturing system. Traditional production systems use a push system, which starts with purchasing supplies and continues manufacturing even when no orders are placed. While push systems are simple to set up, they can result in vast inventories of work-in-progress (WIP). On the other hand, a pull method pulls a customer's order from delivery, causing new items to be made and additional materials to be acquired. Kanban, one of the lean manufacturing tools, can help organizations develop a pull system to control material flow in a production system. An efficient pull system maximizes available space, reduces inventory, eliminates over-and under-production, and eliminates errors caused by too much WIP. Perfection While completing Steps 1-4 is a great start, the fifth and possibly most critical step is incorporating lean thinking and process improvement into your organizational culture. As benefits accumulate, it is vital to remember that lean is not a static system that requires continuous effort and awareness to perfect. Each employee should get included in the lean implementation process. Lean experts sometimes state that a process is not truly lean until it has undergone at least a half-dozen value-stream mapping cycles. How Nike Demonstrated the Benefits of Lean Principles Nike, the world-famous shoe and clothing powerhouse, has embraced lean manufacturing principles and practices. Nike experienced less waste and increased consumer value, as did other businesses. It also shared some unexpected benefits. It is proven that lean manufacturing can minimize terrible labor practices at a company's overseas manufacturing unit by up to 15%. This result was mostly due to implementing the lean manufacturing practice of valuing the workers more than earlier routine labor practices. It provided greater significance to an employee and, as a result, greater significance to the organization as a whole. Final Words Implementing lean manufacturing principles is a good way to run any organization. Businesses that build their operations on the two pillars of lean manufacturing, constant improvement, and personnel respect, are well on their way to becoming a successful and productive organizations in the modern era. To become a lean company, an organization must fully grasp the benefits and added value that it may get by adopting lean manufacturing principles. FAQ What is Five S's of lean manufacturing? The 5S of lean manufacturing are Sort, Set in Order, Shine, Standardize, and Sustain, and they give a framework for organizing, cleaning, developing, and maintaining a productive work environment. What are the two pillars of lean manufacturing? Lean, as modeled on the Toyota Way values, has two pillars, first is ‘Continuous Improvement’ and second is ‘Respect for People’. Why are lean principles beneficial for any business? Lean manufacturing is a business strategy that has proven to be highly successful since it can help you decrease costs, remove waste, enhance production, maintain excellent quality, and thus increase business profit significantly.

Read More

Real-Time Data Collection in Manufacturing: Benefits and Techniques

Article | January 12, 2022

Real-time manufacturing analytics enables the manufacturing base to increase its efficiency and overall productivity in a variety of ways. Production data is an effective means of determining the factory's efficiency and identifying areas where it might be more productive. “Without big data analytics, companies are blind and deaf, wandering out onto the web like deer on a freeway.” – Geoffrey Moore, an American Management Consultant and Author Creating a product-specific data collection may assist you in determining and visualizing what needs to be improved and what is doing well. In this article, we'll look at why manufacturing data collection is vital for your organization and how it may help you improve your operations. Why is Manufacturing Data Collection so Critical? Visibility is the key benefit that every manufacturer gets from manufacturing data collection. By collecting real-time data, or what we refer to as "shop floor data," manufacturers better understand how to assess, comprehend, and improve their plant operations. Manufacturers can make informed decisions based on detailed shop floor data. This is why having precise, real-time production data is critical. “According to Allied Market Research, the worldwide manufacturing analytics market was worth $5,950 million in 2018 and is expected to reach $28,443.7 million by 2026, rising at a 16.5% compound annual growth rate between 2019 and 2026.” For modern manufacturers, the advantages of data collection in manufacturing are numerous. The manufacturing industry benefits from production data and data-driven strategy in the following ways. Substantial reduction in downtime by identifying and addressing the root causes of downtime. It increases manufacturing efficiency and productivity by minimizing production bottlenecks. A more robust maintenance routine that is based on real-time alerts and machine circumstances. Improvements in demand forecasting, supplier scoring, waste reduction, and warehouse optimization reduce supply chain costs. Higher-quality goods that are more in line with customers' wishes and demands depending on how they are utilized in the current world. So, after looking at some of the significant benefits of real-time manufacturing analytics, let’s see what type of data is collected from production data tracking. What Sorts of Data May Be Collected for Production Tracking? Downtime: Operators can record or track downtime for jams, cleaning, minor slowdowns, and stoppages, among other causes, with production tracking software. In the latter scenario, downtime accuracy is optimized by removing rounding, human error, and forgotten downtime occurrences. The software also lets you categorize different types of stops. Changeovers: Changeovers can also be manually recorded. However, changeovers tracked by monitoring software provide valuable data points for analysis, considerably reducing the time required for new configurations. Maintenance Failures: Similar to downtime classification, the program assists in tracking the types of maintenance breakdowns and service orders and their possible causes. This may result in cost savings and enable businesses to implement predictive or prescriptive maintenance strategies based on reliable real-time data. Items of Good Quality: This is a fundamental component of production management. Companies can't fulfill requests for delivery on schedule unless they know what's created first quality. Real-time data collection guarantees that these numbers are accurate and orders are filled efficiently. Scrap: For manufacturers, waste is a significant challenge. However, conventional techniques are prone to overlooking scrap parts or documenting them wrong. The production tracking system can record the number and type of errors, allowing for analysis and improvement. Additionally, it can capture rework, rework time, and associated activities. WIP Inventory: Accurate inventory management is critical in production, yet a significant quantity of material may become "invisible" once it is distributed to the floor. Collecting data on the movement and state of work in progress is critical for determining overall efficiency. Production Schedule: Accurate data collection is essential to managing manufacturing orders and assessing operational progress. Customers' requests may not be fulfilled within the specified lead time if out of stock. Shop floor data gathering provides accurate production histories and helps managers fulfill delivery deadlines. Which Real-time Data Collection Techniques Do Manufacturers Employ? Manufacturers frequently employ a wide range of data collection techniques due to the abundance of data sources. Manual data collection and automated data collection are two of the most common data collection methods. Here are a few examples from both methods: IoT: To provide the appropriate information to the right people at the right time with the correct shop floor insight, IoT (Internet of Things) sensor integration is employed. PLC: The integration of PLC (Programmable Logic Controller) is used to measure and regulate manufacturing operations. HMI: It can provide human context to data by integrating line HMI (Human Machine Interface) systems (such as individual shop terminals like touch screens located on factory floor equipment). SCADA: Overarching management of activities with SCADA (Supervisory Control and Data Acquisition) systems. CNC and Other Machines: Integrating CNC and other machines (both new and older types) to keep tabs on production efficiency and machine well-being is a must these days. Final Words One of the most challenging aspects of shop floor management is determining what to measure and what to overlook. The National Institute of Standards and Technology recently conducted a study on assisting manufacturing operations in determining which data to collect from the shop floor.Additionally, you may utilize the manufacturing data set described above to obtain information from your manufacturing facility and use it strategically to improve operations, productivity, efficiency, and total business revenue in the long term. FAQ What is manufacturing analytics? Manufacturing analytics uses operations and event data and technology in the manufacturing business to assure quality, improve performance and yield, lower costs, and optimize supply chains. How is data collected in manufacturing? Data collection from a manufacturing process can be done through manual methods, paperwork, or a production/process management software system.

Read More

Wireless AGVs May Prove Most Important ProMatDX Innovation

Article | April 1, 2021

April 12 -15 ProMatDX, the largest material handling event, will take place virtually. It will feature dozens of AGV vendors. Sadly, some of these highly innovating products still need to be plugged-in to capture power. No more. Wiferion in process charging eliminates the plug-in charging making AGVs truly autonomous. In process charging eliminates the waste of AGV downtime – the fleet is always working AND charging. In process charging is safe ensuring the OSHA, ergonomics, and danger to workers significantly reduced. In process charging is cost-efficient because full vehicle deployment means a reduced fleet count ensuring a rapid ROI. For OEMs of AGVs and industrial trucks implementing inductive charging technology solves the wear and tear issues caused by conventional charging methods as well as making vehicles fully autonomous. For end-users of AGVs and industrial trucks, inductive charging in combination with lithium batteries can improve fleet availability by more than 30%. Whether driverless transport systems (AGVs), electric forklifts, or mobile robots (AMRs), the efficient use of industrial trucks is a decisive factor for competitiveness during ever- increasing cost pressures. The energy systems are being scrutinized and lithium-ion batteries are the preferred technology. The advantages versus lead-acid batteries (including the ability to recharge faster and more often) are obvious. Until now the full potential of storage technology has not been fully realized.

Read More

Spotlight

ASHIDA Electronics

ASHIDA Electronics Pvt Ltd established in 1970, is based in Thane near Mumbai. ASHIDA has patented most of it's equipments. It is the first company in India to develop a range of static and numerical relays indigenously. The company has obtained ISO 9001:2008 certifications from M/s. BVQI, U.K.

Events