Top 5 Manufacturing Applications of Machine Vision

MACHINE_VISION
Machine vision is becoming increasingly prevalent in manufacturing daily across industries. The machine vision manufacturing practice provides image-based automated inspection and analysis for various applications, including automatic inspection, process control, and robot guiding, often found in the manufacturing business.

This breakthrough in manufacturing technology enables producers to be more innovative and productive to meet customer expectations and deliver the best products on the market.

A renowned industry leader Mr. Matt Mongonce conveyed in an interview with Media7,

As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity

-Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca.

 

Why is Machine Vision so Critical?

The machine vision manufacturing process is entirely automated, with no human intervention on the shop floor. Thus, in a manufacturing process, machine vision adds significant safety and operational benefits. Additionally, it eliminates human contamination in production operations where cleanliness is critical.

For instance, the healthcare business cannot afford human contamination in some circumstances to ensure the safety of medicines. Second, the chemical business is prohibited from allowing individuals to come into touch with chemicals for the sake of worker safety. Thus, machine vision is vital in these instances, so it is critical to integrate machine vision systems into your production process.

 

Machine Vision Application Examples

To better understand how businesses are utilizing machine vision in production, we will look at five cases.

 

Predictive Upkeep

Even a few seconds of production line downtime might result in a significant financial loss in the manufacturing industry. Machine vision systems are used in industrial processes to assist manufacturers in predicting flaws or problems in the production line before the system failure. This machine vision capability enables manufacturing processes to avoid breakdowns or failures in the middle of the manufacturing process.

 

How is FANUC America Corporation Avoiding the Production Line Downtime with ROBOGUIDE and ZDT?

FANUC is a United States-based firm that is a market leader in robotics and ROBOMACHINE technology, with over 25 million units deployed worldwide. In addition, the company's professionals have created two products that are pretty popular in the manufacturing industry: ROBOGUIDE and ZDT (Zero Down Time).
 
These two standout products assist manufacturers in developing, monitoring, and managing production line automation. As a result, producers can enhance production, improve quality, and maximize profitability while remaining competitive.

 

Inspection of Packages

To ensure the greatest possible quality of products for their target consumer groups, manufacturers must have a method in place that enables them to inspect each corner of their product. Machine vision improves the manufacturing process and inspects each product in detail using an automated procedure.

This technology has been used in many industries, including healthcare, automation, and electronics. Manufacturers can detect faults, cracks, or any other defect in the product that is not visible to the naked eye using machine vision systems. The machine vision system detects these faults in the products and transmits the information to the computer, notifying the appropriate person during the manufacturing process.

 

Assembly of Products and Components

The application of machine vision to industrial processes involves component assembly to create a complete product from a collection of small components. Automation, electronics manufacturing, healthcare (medicine and medical equipment manufacturing), and others are the industries that utilize the machine vision system in their manufacturing process. Additionally, the machine vision system aids worker safety during the manufacturing process by enhancing existing safety procedures.

 

Defect Elimination

Manufacturers are constantly endeavoring to release products that are devoid of flaws or difficulties. However, manually verifying each product is no longer practicable for anybody involved in the manufacturing process, as production counts have risen dramatically in every manufacturing organization. This is where machine vision systems come into play, performing accurate quality inspections and assisting producers in delivering defect-free items to their target clients.

 

Barcode Scanning

Earlier in the PCB penalization process, where numerous identical PCBs were made on a single panel, barcodes were used to separate or identify the PCBs manually by humans. This was a time-consuming and error-prone process for the electronics manufacturing industry. This task is subsequently taken over by a machine vision system, in which each circuit is segregated and uniquely identified using a robotics machine or a machine vision system. The high-tech machine vision system "Panel Scan" is one example of a machine vision system that simplifies the PCB tracing procedure.

 

Final Words

The use of machine vision in the manufacturing business enables firms to develop more accurate and complete manufacturing processes capable of producing flawless products. Incorporating machine vision into manufacturing becomes a component of advanced manufacturing, which is projected to be the future of manufacturing in 2022. Maintain current production trends and increase your business revenue by offering the highest-quality items using a machine vision system.

 

FAQ


What is the difference between computer vision and machine vision?

Traditionally, computer vision has been used to automate image processing, but machine vision is applied to real-world interfaces such as a factory line.


Where does machine vision come into play?

Machine vision is critical in the quality control of any product or manufacturing process. It detects flaws, cracks, or any blemishes in a physical product. Additionally, it can verify the precision and accuracy of any component or part throughout product assembly.

What are the fundamental components of a machine vision system?

A machine vision system's primary components are lighting, a lens, an image sensor, vision processing, and communications.

Spotlight

Advantech B+B SmartWorx

Founded in 1981, B+B SmartWorx, formerly B&B Electronics, provides intelligent M2M and IoT connectivity solutions for wireless and wired networks. The company designs and builds device connectivity and network infrastructure products that deliver intelligent connectivity at the “edge” of networks in remote and demanding environments.

OTHER ARTICLES

Standardized Machine Language Will Revolutionize the Way We Work with Data

Article | August 4, 2020

Stefaan Motte, Vice President of Materialise’s software department, discusses our ongoing partnerships with other members of the 3D printing community to standardize machine language and bring the value of printer data to users.We may not pay them attention each day, but every time we plug in phone chargers or travel internationally, we are interacting with standardized components. Imagine traveling internationally by train in the mid-1800s. Europe hadn’t introduced standardized railways yet, so workers had to put in extra time and effort to transfer travelers and goods from one train to another at every country border.

Read More

Corporate Citizenship and Industrial Investment in Uganda: Key to Accessing Significant Affordable Workforce

Article | June 28, 2021

Manufacturing journalist Thomas R. Cutler visited the remarkable and magnificent country of Uganda. Foreign investment is coming into the country and that is a good thing; it is not however, enough. To tap into this workforce corporate citizenship and contribution is essential. Just as I underestimated the stamina needed to climb the mountain to experience the gorillas, the role of transforming Uganda requires a careful, well-thought approach.

Read More

Texturing 3D-printed parts

Article | June 25, 2020

The benefits of applying textures to injection molds are well known — they allow companies to curate the aesthetic of a product and avoid expensive post-processing operations. Designers can control how matte or shiny their molded part is and cover imperfections such as flow lines or sink marks left on the A-surfaces of the part. Textures can also impart functional benefits such as improving grip and paint adhesion. Companies like Mold-Tech have books full of sample textures that make it easy for designers to flip through and choose a suitable finish. Many teams use standard set of textures to ensure a common design language throughout their product lines

Read More
Manufacturing Technology

IoT in Manufacturing: How It's Changing the Way We Do Business

Article | December 10, 2021

IoT in the manufacturing industry introduces a superior technology that is coming up as a blessing for the industry. Manufacturers are enjoying one-of-a-kind benefits and returns on their reinvestments in IoT. Benefits such as enhanced productivity, work safety, reduced downtime, cost-effective operations, and more such benefits of IoT in manufacturing make it more and more popular with each passing day. The global IoT market is estimated to reach a value of USD 1,386.06 billion by 2026 from USD 761.4 billion in 2020 at a CAGR of 10.53 percent over the forecast period of 2021-2026. So the whole worldwide market of IoT has a bright future in the following years. “As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity.” – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca Let’s check out below some exciting facts about IoT in manufacturing and see how IoT makes a difference in the manufacturing industry. IoT in Manufacturing: Some Interesting Facts According to PwC, 91% of industrial/manufacturing enterprises in Germany invest in "digital factories" that use IoT solutions. According to the International Federation of Robotics (IFR), China employs more industrial robots than any other country (many of which are connected to the internet in some way). According to IoT Analytics, the industrial sector spent more than $64 billion on IoT in 2018 and expects investment in Industry 4.0 to reach $310 billion by 2023. According to the Eclipse Foundation, most IoT developers are focused on developing smart agriculture systems (26%), while industrial automation is another big focus area (26%). However, home automation is dwindling in popularity, accounting for just 19% of projects. How Does IoT Work for the Manufacturing Industry? The Internet of Things (IoT) is a network of interconnected devices that communicate with one another and with other networks. While IoT-enabled devices are capable of various tasks, they are primarily employed to collect data and carry out specific tasks. The implementation of the Internet of Things in manufacturing is often referred to as the IIoT, or Industrial Internet of Things. IoT makes use of 'smart' devices to collect, process, and act on data. These intelligent devices are equipped with sensors and other software that enable them to communicate and exchange data inside the network. IoT-enabled equipment gives crucial real-time data that enables manufacturers or machine operators to make informed decisions. So, how does it function in practice? Sensors capture data from the system and transfer it to the cloud, where it can be analyzed. The data is transferred to the quality assurance system. The data that has been analyzed is forwarded to the end-user. How the IoT is Improving Manufacturing Business Operations The Internet of Things (IoT) has numerous benefits for the manufacturing industry. We'll go over some of the significant benefits that the Internet of Things brings to the manufacturing business. Energy Efficiency Solutions Energy is a high cost in manufacturing. Unfortunately, the current industrial energy infrastructure can only track excessive energy consumption. The utility bills include the factory's energy consumption records. But, unfortunately, nobody can break down energy consumption to the device level and find out the underperforming pieces. Some energy usage monitoring tools exist, but they only provide partial data, making system analysis difficult. IoT can help by giving device-level energy data. The sensors will detect any underperforming devices in the network and alert you so you can take action. As a result, the technology can help you reduce energy waste and find other ways to save it. Market Forecasting Data is required to determine trends and quality of production at a manufacturing facility. It also helps manufacturers plan and anticipates changes. These forecasts can help with inventory management, employment, cost control, and other operational procedures. Thus, IoT technology makes it easier to foresee and optimize customer requirements. Proactive Maintenance The Internet of Things (IoT) uses sensors to gather data about assets' health and productivity. In addition, it uses advanced analytics to give actionable information. These are presented on an appealing dashboard connected to your smart device. This allows for predictive maintenance to be used in the manufacturing industry. Superior Product Quality Every manufacturer is determined to produce a high-quality product at a low cost. Therefore, a minor quality modification can have a significant influence on the manufacturing firm. Customer happiness, waste reduction, sales, and profit can all benefit from high-quality products. But making high-quality products isn't easy. The Internet of Things (IoT) can assist you in this endeavor. Poorly set, calibrated, and maintained equipment are some of the main reasons for low-quality products. Worst of all, many small things sometimes go ignored as the final product seems perfect. Quality tests show the product is fine, but your consumers start having problems after a couple of months. Imagine the resources needed to identify and correct the problem. Sensors in an IoT network detect even minimal tweaks in setup and alert operators. The team might momentarily stop production to address the issue before the production cycle gets complete. Rapid and Informed Decision-Making The IoT can dramatically improve organizational decision-making. It unlocks vital data about network equipment performance and delivers it to the right person. Managers and field operators can use this data to improve plant processes and overall production. In addition to these significant benefits, IoT in manufacturing can help manufacturers improve their manufacturing operations and construct a unit that meets the vision of the smart factory of 2040. The future beyond IoT would be the icing on the cake for all of us, as technology has always amazed us. Imagine the day when IoT and AI merge, and the virtual gadgets controlled by IoT are the next major milestone. Then, the ideal combination of robotics, AI, and VR may reduce the manufacturing plant size and cost while increasing the output to a level that is unimaginable and unattainable as of now. Airbus Improved Production Efficiency with Its Factory of the Future Concept It's a massive task for a commercial airliner to be assembled. The expense of making a mistake throughout making such a craft can be significant, as there are millions of parts and thousands of assembly phases. Airbus has established a digital manufacturing effort called Factory of the Future to optimize operations and increase production capacity. The company has installed sensors on factory floor tools and machinery and supplied workers with wearable technologies, such as industrial smart glasses, to reduce errors and improve workplace safety. The wearable allowed for a 500% increase in efficiency while eliminating nearly all mistakes in one process named cabin seat marking. Final Words While the benefits of IoT devices have long been a topic of discussion among technology enthusiasts, the incorporation of IoT in manufacturing is creating a new buzz in the industry. The benefits of IoT in manufacturing, such as remote analysis of operations, processes, and products, are assisting manufacturers in establishing a more productive manufacturing unit. As a result of these benefits, IoT use in manufacturing is accelerating. Recognize the IoT's potential and take a step toward incorporating it into your manufacturing operation in 2022. FAQ What is the Industrial Internet of Things (IIoT)? IIoT stands for Industrial Internet of Things. It uses data to improve industrial efficiency. To enhance industrial performance, it uses embedded sensors, cloud data, and connected devices. Why is the IoT changing manufacturing? Real-time monitoring of machines and accurate reporting for better decisions are possible through IoT. This improves business strategies and project control. Thus, the Internet of Things has a significant impact on the profitability of any manufacturing company. How does the IoT transform the way we do business? We can use data collected by IoT devices to improve efficiency and help organizations make better decisions. They tell organizations the truth, not what they hope or believe. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What is the Industrial Internet of Things (IIoT)?", "acceptedAnswer": { "@type": "Answer", "text": "IIoT stands for Industrial Internet of Things. It uses data to improve industrial efficiency. To enhance industrial performance, it uses embedded sensors, cloud data, and connected devices." } },{ "@type": "Question", "name": "Why is the IoT changing manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Real-time monitoring of machines and accurate reporting for better decisions are possible through IoT. This improves business strategies and project control. Thus, the Internet of Things has a significant impact on the profitability of any manufacturing company." } },{ "@type": "Question", "name": "How does the IoT transform the way we do business?", "acceptedAnswer": { "@type": "Answer", "text": "We can use data collected by IoT devices to improve efficiency and help organizations make better decisions. They tell organizations the truth, not what they hope or believe." } }] }

Read More

Spotlight

Advantech B+B SmartWorx

Founded in 1981, B+B SmartWorx, formerly B&B Electronics, provides intelligent M2M and IoT connectivity solutions for wireless and wired networks. The company designs and builds device connectivity and network infrastructure products that deliver intelligent connectivity at the “edge” of networks in remote and demanding environments.

Related News

Manufacturing Technology

MaxLinear Launches Product Design Kit for Active Electrical Cables Using Keystone PAM4 DSP

MaxLinear | February 02, 2024

MaxLinear, Inc. a leading provider of high-speed interconnect ICs enabling data center, metro, and wireless transport networks, announced the availability of a comprehensive product design kit (PDK) to optimize performance and accelerate the time to market for high-speed Active Electrical Cables (AEC) using MaxLinear’s 5nm PAM4 DSP, Keystone. The PDK is a cost-cutting and time-saving tool for cable manufacturers who want to quickly integrate Keystone into their active electrical cables. MaxLinear’s Keystone PAM4 DSP offers a significant power advantage in AEC applications, which is increasingly becoming a critical factor for hyperscale data centers. The use of 5nm CMOS technology enables designers and manufacturers to build high-speed cables that meet the need for low power, highly integrated, high performance interconnect solutions that will drive the next generation of hyperscale cloud networks. Manufacturers taking advantage of MaxLinear’s PDK to optimize cable designs using Keystone PAM4 DSP will gain a distinct advantage over competitor solutions when trying to maximize reach and minimize power consumption. The PDK makes Keystone easy to integrate with strong applications support, multiple tools to optimize and monitor performance, and reference designs (SW and HW) to accelerate integration. Sophisticated software allows for quick design optimization for the lowest possible power consumption and maximizing cable reach. Cable designers can constantly monitor performance, route signals from any port to any port, and take advantage of hitless firmware upgrades. “MaxLinear is focused on providing not only industry-leading interconnect technologies but also a comprehensive suite of tools to support our manufacturing and design partners,” said Drew Guckenberger, Vice President of High Speed Interconnect at MaxLinear. “Our development kit for our Keystone products provides them with a path to take products to market more quickly and more cost-effectively.” Active electrical cables (AECs) are revolutionizing data center connections. Unlike passive cables, they actively boost signals, allowing for longer distances (up to 7 meters for 400G), higher bandwidth, and thinner, lighter cables. This makes them ideal for high-speed applications like top-of-rack connections (connecting switches to servers within the same rack); direct digital control (enabling flexible interconnectivity within racks and across rows); and breakout solutions (splitting high-speed connections into multiple lower-speed channels). The high-speed interconnect market – which includes active optical cables, active electrical cables, direct attach copper cables, and others – is expected to grow to $17.1B by 2028, up from $10.7B in 2021 according to a market forecast report from The Insight Partners. The Keystone Family The Keystone 5nm DSP family caters to 400G and 800G applications, featuring a groundbreaking 106.25Gbps host side electrical I/O, aligning with the line side interface rate. Available variants support single-mode optics (EML and SiPh), multimode optics and Active Electrical Cables (AECs), offering comprehensive solutions with companion TIAs. Host side interfaces cover ethernet rates of 25G, 50G, and 100G per lane over C2M, MR, and LR host channels. The line side interfaces, tailored for 100G/λ DR, FR, and LR applications, also support these rates. These devices boast extensive DSP functionality, encompassing line-side transmitter DPD, TX FIR, receiver FFE, and DFE. With exceptional performance and signal integrity, these DSPs occupy a compact footprint (12mm x 13mm), ideal for next-gen module form-factors like QSFP-DD800 and OSFP800. Additionally, they are available as Known Good Die (KGD) for denser applications, such as OSFP-XD. About MaxLinear, Inc. MaxLinear, Inc. is a leading provider of radio frequency (RF), analog, digital, and mixed-signal integrated circuits for access and connectivity, wired and wireless infrastructure, and industrial and multimarket applications. MaxLinear is headquartered in Carlsbad, California. MaxLinear, the MaxLinear logo, any other MaxLinear trademarks are all property of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved.

Read More

Smart Factory

PsiQuantum, Mitsubishi UFJ Financial Group and Mitsubishi Chemical Announce Partnership to Design Energy-Efficient Materials on PsiQuantum’s

PsiQuantum | January 30, 2024

PsiQuantum and Mitsubishi UFJ Financial Group announced that they are beginning work with Mitsubishi Chemical Group on a joint project to simulate excited states of photochromic molecules which have widespread industrial and residential potential applications such as the development of smart windows, energy-efficient data storage, solar energy storage and solar cells, and other photoswitching use cases. Qlimate, a PsiQuantum-led initiative that includes MUFG as a partner, focuses on using fault-tolerant quantum computing to crack the most challenging computational problems and accelerate the development of scalable breakthroughs across climate technologies, including more energy-efficient materials. Mitsubishi UFJ Financial Group (MUFG) is committed to supporting the world’s transition to a sustainable future, and to encourage industry access to the most promising breakthrough technologies. By pioneering PsiQuantum’s Qlimate solutions with industry leader Mitsubishi Chemical, MUFG is at the forefront of quantum computing for sustainability. This joint project will determine whether high-accuracy estimates of excited state properties are feasible on early-generation fault-tolerant quantum computers, specifically focusing on diarylethenes used for energy-efficient photoswitching applications. The project will allow Mitsubishi Chemical to gain early insights into how and when fault-tolerant quantum computing can be deployed in support of critical, scalable, sustainable materials. Because predicting the optical properties of materials requires complex analysis of excited states, standard algorithmic techniques for simulating these molecules (such as the Density Functional Theory, or DFT) often produce qualitatively incorrect results. The project will bring together Mitsubishi Chemical’s deep experience of computational chemistry and PsiQuantum’s leading expertise in fault-tolerant quantum computing to push the boundaries of approaching the complex physics in these systems and pave the way to developing new, more powerful energy-efficient photonic materials. Philipp Ernst, Head of Solutions at PsiQuantum, said: “PsiQuantum has dedicated teams who identify, describe and solve complex problem sets with best-in-class quantum algorithms. These are designed specifically to run on fault-tolerant quantum computers and will tackle previously-impossible computational challenges. This partnership will leverage our team’s unique know-how and Mitsubishi Chemical’s expertise in photochromic materials. We are grateful for MUFG’s visionary support in our mission to deploy high-impact quantum computing solutions to fight climate change.” Suguru Azegami, Managing Director, Sustainable Business Division, MUFG said: “We are excited to partner with PsiQuantum and Mitsubishi Chemical on our journey to explore possibilities of quantum computing technologies to solve the imminent global challenge. PsiQuantum’s vision to develop the first utility scale quantum computer before the end of the decade has inspired us, which led our initiative to participate in the Qlimate partnership as the first and sole member from Japan. Mitsubishi Chemical is leading efforts to use the cutting-edge technology to develop next generation materials and we are honored to support the company as its long term financial partner.” Qi Gao, Senior Chief Scientist, Mitsubishi Chemical said: “We are pleased to be part of the partnership and are grateful for MUFG’s support. Mitsubishi Chemical’s over 40 years background in computational chemistry and PsiQuantum’s domain specific knowledge for quantum control is a great fit with the collaboration effort of improving calculation accuracy on quantum device. We hope the partnership will accelerate the innovation of revolutionizing computational studies in chemistry and materials science.” About PsiQuantum PsiQuantum is a private company, founded in 2015 and headquartered in Palo Alto, California. The company’s only mission is to build and deploy the world’s first useful, large-scale quantum computer. Many teams around the world today have demonstrated prototype quantum computing systems, but it is widely accepted that much larger systems are necessary in order to unlock transformational applications across drug discovery, climate technologies, finance, transportation, security & defense and beyond. PsiQuantum’s photonic approach enables rapid scaling via direct leverage of high-volume semiconductor manufacturing and cryogenic infrastructure. The company is partnered with the SLAC National Accelerator Laboratory at Stanford University and Sci-Tech Daresbury in the United Kingdom. About Mitsubishi UFJ Financial Group, Inc. (MUFG) Mitsubishi UFJ Financial Group, Inc. (MUFG) is one of the world’s leading financial groups. Headquartered in Tokyo and with over 360 years of history, MUFG has a global network with approximately 2,000 locations in more than 50 countries. The Group has about 160,000 employees and offers services including commercial banking, trust banking, securities, credit cards, consumer finance, asset management, and leasing. The Group aims to “be the world’s most trusted financial group” through close collaboration among our operating companies and flexibly respond to all of the financial needs of our customers, serving society, and fostering shared and sustainable growth for a better world. MUFG’s shares trade on the Tokyo, Nagoya, and New York stock exchanges. About the Mitsubishi Chemical Group Corporation Mitsubishi Chemical Group Corporation (TSE: 4188) is a specialty materials group with an unwavering commitment to lead with innovative solutions to achieve KAITEKI, the well-being of people and the planet. We bring deep expertise and material science leadership in core market segments such as mobility, digital, medical and food. In this way, we enable industry transformation, technology breakthroughs, and longer, more fruitful lives for us all. Together, around 70,000 employees worldwide provide advanced chemistry-based solutions to deliver the core elements of our slogan — “Science. Value. Life.”

Read More

Additive Manufacturing

Teledyne Relays Unveils Innovative Multi-Function Timer Series

Teledyne Relays, Inc. | January 29, 2024

Teledyne Relays, a leading provider of cutting-edge relay solutions, introduces its new Multi-Function Timer product series, showcasing the company's commitment to delivering advanced, reliable, and versatile solutions for the industrial automation sector. Teledyne Relays Multi-Function Timer MFT series is a state-of-the-art solution designed for a wide variety of applications that demand precise timing control. The user-friendly design features three potentiometers for easy selection of timing functions and ranges, while the LEDs provide at-a-glance feedback of timing and relay status. The MFT series also features 7 selectable timing functions for a wide variety of applications Timing ranges from 0.1 seconds up to 100 hours Compact 17.5mm housing preserves valuable panel space Supply Voltages: 24VDC & 24-240VAC OR 12-240VAC/DC 5A SPDT output relay Engineered with the needs of electrical engineers, panel builders, and automation engineers in mind, these timers find application in various industries, including but not limited to Industrial Automation Manufacturing Process Control Systems HVAC and Refrigeration Agriculture and Irrigation Power Distribution “With the new Multi-Function Timer series, Teledyne Relays continues to lead in providing reliable and versatile solutions for industrial automation, ensuring precise timing control,” said Michael Palakian, Vice President of Global Sales and Marketing at Teledyne Relays. The Multi-Function Timer series from Teledyne Relays ensures precise timing control, offering unparalleled reliability across diverse applications and is available for ordering from Teledyne Relays or an authorized distributor. About Teledyne Relays Teledyne Relays is a world leader in high-performance coaxial switches, electromechanical, and solid-state relays, offering a wide range of solutions for various applications in the aerospace and defense, telecommunications, test and measurement, and industrial markets. With over 60 years of experience, Teledyne Relay has established a reputation for quality, reliability, and customer service excellence. About Teledyne Defense Electronics Serving Defense, Space and Commercial sectors worldwide, Teledyne Defense Electronics offers a comprehensive portfolio of highly engineered solutions that meet your most demanding requirements in the harshest environments. Manufacturing both custom and off-the-shelf product offerings, our diverse product lines meet emerging needs for key applications for avionics, energetics, electronic warfare, missiles, radar, satcom, space and test and measurement.

Read More

Manufacturing Technology

MaxLinear Launches Product Design Kit for Active Electrical Cables Using Keystone PAM4 DSP

MaxLinear | February 02, 2024

MaxLinear, Inc. a leading provider of high-speed interconnect ICs enabling data center, metro, and wireless transport networks, announced the availability of a comprehensive product design kit (PDK) to optimize performance and accelerate the time to market for high-speed Active Electrical Cables (AEC) using MaxLinear’s 5nm PAM4 DSP, Keystone. The PDK is a cost-cutting and time-saving tool for cable manufacturers who want to quickly integrate Keystone into their active electrical cables. MaxLinear’s Keystone PAM4 DSP offers a significant power advantage in AEC applications, which is increasingly becoming a critical factor for hyperscale data centers. The use of 5nm CMOS technology enables designers and manufacturers to build high-speed cables that meet the need for low power, highly integrated, high performance interconnect solutions that will drive the next generation of hyperscale cloud networks. Manufacturers taking advantage of MaxLinear’s PDK to optimize cable designs using Keystone PAM4 DSP will gain a distinct advantage over competitor solutions when trying to maximize reach and minimize power consumption. The PDK makes Keystone easy to integrate with strong applications support, multiple tools to optimize and monitor performance, and reference designs (SW and HW) to accelerate integration. Sophisticated software allows for quick design optimization for the lowest possible power consumption and maximizing cable reach. Cable designers can constantly monitor performance, route signals from any port to any port, and take advantage of hitless firmware upgrades. “MaxLinear is focused on providing not only industry-leading interconnect technologies but also a comprehensive suite of tools to support our manufacturing and design partners,” said Drew Guckenberger, Vice President of High Speed Interconnect at MaxLinear. “Our development kit for our Keystone products provides them with a path to take products to market more quickly and more cost-effectively.” Active electrical cables (AECs) are revolutionizing data center connections. Unlike passive cables, they actively boost signals, allowing for longer distances (up to 7 meters for 400G), higher bandwidth, and thinner, lighter cables. This makes them ideal for high-speed applications like top-of-rack connections (connecting switches to servers within the same rack); direct digital control (enabling flexible interconnectivity within racks and across rows); and breakout solutions (splitting high-speed connections into multiple lower-speed channels). The high-speed interconnect market – which includes active optical cables, active electrical cables, direct attach copper cables, and others – is expected to grow to $17.1B by 2028, up from $10.7B in 2021 according to a market forecast report from The Insight Partners. The Keystone Family The Keystone 5nm DSP family caters to 400G and 800G applications, featuring a groundbreaking 106.25Gbps host side electrical I/O, aligning with the line side interface rate. Available variants support single-mode optics (EML and SiPh), multimode optics and Active Electrical Cables (AECs), offering comprehensive solutions with companion TIAs. Host side interfaces cover ethernet rates of 25G, 50G, and 100G per lane over C2M, MR, and LR host channels. The line side interfaces, tailored for 100G/λ DR, FR, and LR applications, also support these rates. These devices boast extensive DSP functionality, encompassing line-side transmitter DPD, TX FIR, receiver FFE, and DFE. With exceptional performance and signal integrity, these DSPs occupy a compact footprint (12mm x 13mm), ideal for next-gen module form-factors like QSFP-DD800 and OSFP800. Additionally, they are available as Known Good Die (KGD) for denser applications, such as OSFP-XD. About MaxLinear, Inc. MaxLinear, Inc. is a leading provider of radio frequency (RF), analog, digital, and mixed-signal integrated circuits for access and connectivity, wired and wireless infrastructure, and industrial and multimarket applications. MaxLinear is headquartered in Carlsbad, California. MaxLinear, the MaxLinear logo, any other MaxLinear trademarks are all property of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved.

Read More

Smart Factory

PsiQuantum, Mitsubishi UFJ Financial Group and Mitsubishi Chemical Announce Partnership to Design Energy-Efficient Materials on PsiQuantum’s

PsiQuantum | January 30, 2024

PsiQuantum and Mitsubishi UFJ Financial Group announced that they are beginning work with Mitsubishi Chemical Group on a joint project to simulate excited states of photochromic molecules which have widespread industrial and residential potential applications such as the development of smart windows, energy-efficient data storage, solar energy storage and solar cells, and other photoswitching use cases. Qlimate, a PsiQuantum-led initiative that includes MUFG as a partner, focuses on using fault-tolerant quantum computing to crack the most challenging computational problems and accelerate the development of scalable breakthroughs across climate technologies, including more energy-efficient materials. Mitsubishi UFJ Financial Group (MUFG) is committed to supporting the world’s transition to a sustainable future, and to encourage industry access to the most promising breakthrough technologies. By pioneering PsiQuantum’s Qlimate solutions with industry leader Mitsubishi Chemical, MUFG is at the forefront of quantum computing for sustainability. This joint project will determine whether high-accuracy estimates of excited state properties are feasible on early-generation fault-tolerant quantum computers, specifically focusing on diarylethenes used for energy-efficient photoswitching applications. The project will allow Mitsubishi Chemical to gain early insights into how and when fault-tolerant quantum computing can be deployed in support of critical, scalable, sustainable materials. Because predicting the optical properties of materials requires complex analysis of excited states, standard algorithmic techniques for simulating these molecules (such as the Density Functional Theory, or DFT) often produce qualitatively incorrect results. The project will bring together Mitsubishi Chemical’s deep experience of computational chemistry and PsiQuantum’s leading expertise in fault-tolerant quantum computing to push the boundaries of approaching the complex physics in these systems and pave the way to developing new, more powerful energy-efficient photonic materials. Philipp Ernst, Head of Solutions at PsiQuantum, said: “PsiQuantum has dedicated teams who identify, describe and solve complex problem sets with best-in-class quantum algorithms. These are designed specifically to run on fault-tolerant quantum computers and will tackle previously-impossible computational challenges. This partnership will leverage our team’s unique know-how and Mitsubishi Chemical’s expertise in photochromic materials. We are grateful for MUFG’s visionary support in our mission to deploy high-impact quantum computing solutions to fight climate change.” Suguru Azegami, Managing Director, Sustainable Business Division, MUFG said: “We are excited to partner with PsiQuantum and Mitsubishi Chemical on our journey to explore possibilities of quantum computing technologies to solve the imminent global challenge. PsiQuantum’s vision to develop the first utility scale quantum computer before the end of the decade has inspired us, which led our initiative to participate in the Qlimate partnership as the first and sole member from Japan. Mitsubishi Chemical is leading efforts to use the cutting-edge technology to develop next generation materials and we are honored to support the company as its long term financial partner.” Qi Gao, Senior Chief Scientist, Mitsubishi Chemical said: “We are pleased to be part of the partnership and are grateful for MUFG’s support. Mitsubishi Chemical’s over 40 years background in computational chemistry and PsiQuantum’s domain specific knowledge for quantum control is a great fit with the collaboration effort of improving calculation accuracy on quantum device. We hope the partnership will accelerate the innovation of revolutionizing computational studies in chemistry and materials science.” About PsiQuantum PsiQuantum is a private company, founded in 2015 and headquartered in Palo Alto, California. The company’s only mission is to build and deploy the world’s first useful, large-scale quantum computer. Many teams around the world today have demonstrated prototype quantum computing systems, but it is widely accepted that much larger systems are necessary in order to unlock transformational applications across drug discovery, climate technologies, finance, transportation, security & defense and beyond. PsiQuantum’s photonic approach enables rapid scaling via direct leverage of high-volume semiconductor manufacturing and cryogenic infrastructure. The company is partnered with the SLAC National Accelerator Laboratory at Stanford University and Sci-Tech Daresbury in the United Kingdom. About Mitsubishi UFJ Financial Group, Inc. (MUFG) Mitsubishi UFJ Financial Group, Inc. (MUFG) is one of the world’s leading financial groups. Headquartered in Tokyo and with over 360 years of history, MUFG has a global network with approximately 2,000 locations in more than 50 countries. The Group has about 160,000 employees and offers services including commercial banking, trust banking, securities, credit cards, consumer finance, asset management, and leasing. The Group aims to “be the world’s most trusted financial group” through close collaboration among our operating companies and flexibly respond to all of the financial needs of our customers, serving society, and fostering shared and sustainable growth for a better world. MUFG’s shares trade on the Tokyo, Nagoya, and New York stock exchanges. About the Mitsubishi Chemical Group Corporation Mitsubishi Chemical Group Corporation (TSE: 4188) is a specialty materials group with an unwavering commitment to lead with innovative solutions to achieve KAITEKI, the well-being of people and the planet. We bring deep expertise and material science leadership in core market segments such as mobility, digital, medical and food. In this way, we enable industry transformation, technology breakthroughs, and longer, more fruitful lives for us all. Together, around 70,000 employees worldwide provide advanced chemistry-based solutions to deliver the core elements of our slogan — “Science. Value. Life.”

Read More

Additive Manufacturing

Teledyne Relays Unveils Innovative Multi-Function Timer Series

Teledyne Relays, Inc. | January 29, 2024

Teledyne Relays, a leading provider of cutting-edge relay solutions, introduces its new Multi-Function Timer product series, showcasing the company's commitment to delivering advanced, reliable, and versatile solutions for the industrial automation sector. Teledyne Relays Multi-Function Timer MFT series is a state-of-the-art solution designed for a wide variety of applications that demand precise timing control. The user-friendly design features three potentiometers for easy selection of timing functions and ranges, while the LEDs provide at-a-glance feedback of timing and relay status. The MFT series also features 7 selectable timing functions for a wide variety of applications Timing ranges from 0.1 seconds up to 100 hours Compact 17.5mm housing preserves valuable panel space Supply Voltages: 24VDC & 24-240VAC OR 12-240VAC/DC 5A SPDT output relay Engineered with the needs of electrical engineers, panel builders, and automation engineers in mind, these timers find application in various industries, including but not limited to Industrial Automation Manufacturing Process Control Systems HVAC and Refrigeration Agriculture and Irrigation Power Distribution “With the new Multi-Function Timer series, Teledyne Relays continues to lead in providing reliable and versatile solutions for industrial automation, ensuring precise timing control,” said Michael Palakian, Vice President of Global Sales and Marketing at Teledyne Relays. The Multi-Function Timer series from Teledyne Relays ensures precise timing control, offering unparalleled reliability across diverse applications and is available for ordering from Teledyne Relays or an authorized distributor. About Teledyne Relays Teledyne Relays is a world leader in high-performance coaxial switches, electromechanical, and solid-state relays, offering a wide range of solutions for various applications in the aerospace and defense, telecommunications, test and measurement, and industrial markets. With over 60 years of experience, Teledyne Relay has established a reputation for quality, reliability, and customer service excellence. About Teledyne Defense Electronics Serving Defense, Space and Commercial sectors worldwide, Teledyne Defense Electronics offers a comprehensive portfolio of highly engineered solutions that meet your most demanding requirements in the harshest environments. Manufacturing both custom and off-the-shelf product offerings, our diverse product lines meet emerging needs for key applications for avionics, energetics, electronic warfare, missiles, radar, satcom, space and test and measurement.

Read More

Events