The Rebirth Of Additive Manufacturing In 2019

| December 17, 2018
THE REBIRTH OF ADDITIVE MANUFACTURING IN 2019
As of the end of 2018, it has now been seven years since SmarTech Publishing believes the additive manufacturing (AM) industry reached its most significant inflection point when the mass influx of low-cost desktop machines catalyzed public attention in the technology like never before.

Spotlight

BDR Thermea

De Dietrich Remeha Group and Baxi Group have created BDR Thermea, a new world class company in heating products. BDR Thermea focuses on customer needs regarding innovative climate and hot water solutions and services, offering systems instead of only single products. The strong R&D platform and the financial strength of BDR Thermea make it possible to enhance the existing product range. This focus on R&D and innovation also provides the opportunity to confirm and build on the leadership in the emerging market for low carbon micro combined heat and power products and can support the way BDR Thermea contributes to a sustainable environment.

OTHER ARTICLES

The packaging journey: Is it an important factor for your brand?

Article | June 8, 2021

The last 12 months saw a considerable increase in e-commerce, driven by the global pandemic with many retail commentators believing this is an irreversible behavioural shift. If correct, this will further underline the importance of the packaging journey, since the likelihood of consumers primarily interacting with brands through deliveries increases, potentially becoming the standard purchasing process. Robert Lockyer, CEO and founder of Delta Global, a sustainable packaging solutions provider for luxury fashion brands, considers the impact of the packaging journey amid these new retail dynamics. How much impact could a single packaging box have when it comes to consumer engagement and marketing? This is a question that all retailers and brands should reconsider, given the tumultuous nature of the retail landscape. If Deloitte’s recent report into the Danish consumer’s permanent shift to online shopping can be viewed as a microcosm of imminent global trends, then businesses must adapt packaging to incorporate the entire journey. Last year, the fashion and luxury markets were forecast to decline by an astounding $450 - $600 billion. A market previously thought too-big-to fail is taking a huge financial hit. The long-term effects of Covid-19 on retail as whole are unclear. But packaging has become too integral to the sales journey to ignore. Packaging, therefore, can work as a core marketing tool, beyond the basics of the primary recipients’ experience. In this article, I’ll highlight how best to consider and exploit the entire packaging journey, ensuring that packaging realises its complete potential. Materials Manufacturing that avoids the use of sustainable materials is becoming impossible to justify, from both an economic and environmental perspective. In fact, they are, practically speaking, one and the same. We know that a significant majority of consumers expect businesses to adopt a sustainable ethos – and are willing to pay more for it. Therefore, the economic viability of sustainable packaging is fortified by consumer expectation. It is both a market and environmental inevitability. Beginning a packaging journey should start with the selection of sustainable, recyclable, reusable materials. This is a stage in the packaging voyage that is easily achieved, with manufacturers increasingly switching to eco-friendly methods. At Delta Global, sustainability is incorporated into every packaging product we produce. We’ve seen demands for sustainable services increase, but more can be done to mark this initial step as a marketing footprint rather than a footnote. There are some great recent examples of how to do this right, from Burberry’s elegant reinvention of the ordinary cardboard box which will go even further to remove all plastic from its packaging by 2025, through to Gucci’s opulent Victorian wallpaper design packaging that is fully recyclable. And so, step one - the initial consumer experience and expectation, is met through sustainable materials, and when done correctly, is easily exceeded. Design Once the correct materials are selected, brands should start think about design beyond creating an attractive, secure container. The goal here is to inspire the consumer to utilise the packaging in a way that positions them as a virtual brand ambassador. Consider the rise of the unboxing video. YouTube reported a 57% increase in product unboxing videos in one year, with these videos having in excess of a billion yearly views. Together with Instagram, where 58% of its estimated 1.074 billion users log-in to follow trends and styles, visually oriented content platforms provide an unmissable marketing opportunity. It is important to underline that this type of viral marketing need not rely on paid celebrities. In fact, I am advocating for a completely organic approach where possible. From a brand’s perspective, recipients of well-executed sustainable packaging must progress this initial positive experience by innovative and thoughtful design. That way, authentically persuasive content will occur naturally. And it's this type of spontaneous, highly engaged micro-influencing that rewards brands that have fully considered the packaging journey. To achieve this requires innovation. You might consider implementing technology and connected packaging, where apps and QR codes are integrated into the packing itself. A favourite example of this is Loot Crates brilliantly innovative unboxing experience which connects, via an app, to new products and exclusive items. While technological innovation provides a novelty that encourages unboxing videos, simpler approaches can equally inspire the consumer through personal touches like VIVE Wellness’ individually packaged and addressed turquoise vitamin tubes, or M.M Lafleur’s curated and detail-oriented ‘bento box’ styling solution. These packaging creations work because they provide memorable experiences, centred on discovery, individuality and, ultimately, shareability. Packaging after purchase The third and most under-utilised part of the packaging journey is post-unboxing usage. Brands should ask themselves who the packaging is seen by – and does the packaging have the function to be seen and used by others? At this point in the packaging journey, we are hoping to harvest as many positive impressions as possible. This can include, for example, delivery drivers, photographers and stylists. The concept is not abstract. Reflect on the reaction felt by a fashion photographer the first time they received, from an enthused stylist, a Gucci item in its new opulent emerald green packaging. Or the response of a delivery driver when seeing, in amongst the more mundane boxes, MatchesFashion’s reimagining of the a cardboard parcel. Is it likely that the impression made by those stand-out packaging designs will be talked about, purred over, recommended and revered? The answer is obviously a resounding yes. When this happens online, we call it influencer marketing. And we should not dismiss this type of marketing when it happens offline. Word of mouth matters. In an increasingly online consumer market where the first – and perhaps only – physical interaction between brand/consumer is through the packaging experience, it will matter more. To our imaginary trio of driver, photographer and stylist, let’s introduce the general consumer. How likely it is that any of those would throw such packaging away? They are so wonderfully designed that reusability and repurposing are inevitable. When a packaging compels secondary usage - deployed around homes and offices as containers, storage or decoration – you are creating an item that symbolises what marketers spending entire budgets pursuing: brand as central to an aspirational lifestyle. If the retail market is moving irrevocably online, the offline journey of packaging – from manufacturer, deliverer, consumer and user – can ease that transition and become a perpetual marketing tool. This way, brands and retailers can enjoy the journey and the destination.

Read More

How Collaborative Robots Are Revolutionizing the Manufacturing Industry

Article | December 10, 2021

A new form of robot is entering manufacturing plants all around the globe. Instead of being locked away in their own work cell, collaborative robots work side by side with their human counterparts. Together, they form the manufacturing crew of the future. Collaborative robots, or cobots, are more flexible, easy to use, and safer than industrial robots. Instead of ending up abandoned in a corner, they are proving to be serious expansions of production capacity leading to better ways of creating superior quality products. 1.1 A New Breed of Bot Cobots are a new type of automation product with their own ISO standards for safety and usability. For a robot to qualify as a cobot, it has to be used for tasks of a collaborative nature while sharing all or part of its reach space with human operators. So it is not the product alone that classifies it as a cobot. Industrial robots must be expertly programmed for one specific job along the production line. This requires hard line coding and endless tweaking and testing, which together with other factors make for a sizable upfront investment. Not so with collaborative robots. Cobots may look similar to traditional robots in some ways, but they are much easier to install and program. This foregoes the need to cooperate with a robotic integration service. Their lightweight and friendly form factor lets manufacturers conveniently relocate them on the shopfloor from one project to another. This renders the robotics technology perfect for a data-driven, Industry 4.0 work environment. Cobots can side with traditional machinery and additive manufacturing equipment, aided by artificial intelligence and cloud connectivity while embedded in a networked environment rich with smart sensors and mixed reality interfaces. 1.2 A Unique Blend of Benefits Because it is fairly straightforward to reprogram a cobot to various tasks, they are perfect for high-mix, low-volume work to meet the rising demand for ultra-customized products. They can also do multiple tasks in unison, such as alternatingly loading a machine and finishing parts from the previous cycle. Here are some other advantages in addition to flexibility: • Low investment. Cobots typically cost a fraction of the price of an industrial robot, but they offer much lower payload and reach. ROI is typically one to two years. • Safety. With rounded surfaces, force-limited joints, and advanced vision systems, cobots are exceptionally safe. This reduces the risk of injury due to impact, crushing, and pinching. Driverless transport systems are wheeled mobile robots that immediately halt when their lasers detect the presence of a nearby human being. • Accuracy. Cobots score well on accuracy with 0.1mm precision or well below that. While they do typically sacrifice speed, dual-mode cobots can be converted to fully-fledged tools of mass production that run at full speed in their own safeguarded space. • Easy to program. Many brands offer user-friendly programming interfaces from beginner to expert level. This reduces the need for continuous availability of expensive and scarce expertise while giving current employees an incentive to upskill. And because they can be deployed within hours, cobots can be leased for temporary projects. • Research. Small processing plants, agile start-ups, and schools can invest in cobots to experiment with ways to automate processes before committing to full automation. 1.3 Cobot Activity Repertoire Cobots are perfect candidates for taking over strenuous, dirty, difficult, or dull jobs previously handled by human workers. This relieves their human co-workers from risk of repetitive strain injury, muscle fatigue, and back problems. They can also increase job satisfaction and ultimately a better retirement. The cobot’s program of responsibilities includes: • Production tasks such as lathing, wire EDM, and sheet stamping. • Welding, brazing, and soldering. • Precision mounting of components and fasteners, and applying adhesive in various stages of general assembly. • Part post-finishing such as hole drilling, deburring, edge trimming, deflashing, sanding, and polishing. • Loading and unloading traditional equipment such as CNC and injection molding machines, and operating it using a control panel to drastically reduce cycle times. • Post-inspection such as damage detection, electronic circuit board testing, and checking for circularity or planarity tolerances. • Box-packing, wrapping, and palletizing. • Automated guided vehicles (AGVs) and autonomous mobile robots (AMRs) assist with internal transport and inventory management. 1.4 No-Code Programming While an industrial robot requires the attention of a high-paid robotics engineer, anyone with basic programming savviness can install and maintain a collaborative unit. Brands are releasing more and more kits for quick installation and specific use cases. Instead of being all numbers and line-coding, current user interaction is exceptionally people-focused. At the lowest skill level, lead-through programming lets operators physically guide the cobot’s end-of-arm-tool (EOAT) through the desired motion path, after which it will flawlessly replicate the instructed behaviour. It is also possible to enter desired waypoints as coordinates. At the highest level, it is of course still possible to have full scripting control. An intermediate step is visual programming interfaces. These let users create blocks of functionality that they can string together into more advanced action sequences, while entering the appropriate parameters for each function such as gripping strength, screwing tightness, or pressing force. These UIs come in the form of in-browser or mobile apps. Based on a 3D-CAD model of the machine and its industrial environment, a digital twin of the cobot can simulate and optimize its operations, for example to prevent collisions. It also lets operators remotely monitor and adjust the machine while it’s running. All the while, back-end artificial intelligence can do its analyses to find further efficiency improvements. 3D models of the to-be-manufactured product can be imported for edge extraction of complex surfaces. These will then be converted into the cobot’s desired movement trajectories instead of tedious manual programming. This makes them feasible to implement for highly dexterous tasks like welding curved hydroformed metal parts or sanding and polishing the most intricate of 3D printed geometries. Interfacing directly with the robot is becoming increasingly human-centered as well. Future cobots will respond to voice interaction as well as touch input, eradicating the screens-and-buttons paradigm of current devices. Some brands are giving the cobot a face with emotional expressions, hoping to lower the barrier to adoption. The upcoming generation of cobots can even respond to body language, as well as show its intentions by projecting light to where they are about to reach or move next. 1.5 A Human World Ultimately, the objective of any company is to create value for people. It is not an option to completely remove humans from the shop floor in an attempt to stay at the forefront of innovation. Attempting to leap to full automation and the utopian “lights-out factory” does not work anyway, as automotive giants such as Ford, Chrysler, GM, and Tesla can testify. A significant portion of human employees will indeed need to give up their roles. On the other hand, improved productivity levels open up space to retain personnel and uplift them to more creative, managerial, analytical, social, or overall more enjoyable jobs. For certain tasks, humans still need to be kept inside the manufacturing loop. For example: • Complex assembly routines and handling of flexible components. • Large vehicle subassemblies contain many variable components and require more hand-eye coordination than one cobot can handle. Humans are needed to make sure everything lands in the right position while the cobot provides assistive muscle power. • Fashion, footwear, jewellery, art pieces, and other products where creation borders on artistry rather than mechanical assembly require the aesthetic eye of humans. People are also needed to spot aesthetic deficiencies in custom one-offs in order to correspond with customers before finishing the production batch. • While intelligent automation software can spot bottlenecks in efficiency, humans are required for creative problem solving and context-awareness to make decisions. A spirit of flexibility and innovation is just as important as the accuracy of perfect repetitions. 1.6 Mission: Install a Cobot Cobots have numerous advantages over industrial solutions or people-only workspaces. They enable faster, more precise, and more sophisticated operations while reducing downtime and maintaining employee satisfaction. Low-voltage operation and reduced material waste fits with sustainable innovation and corporate social responsibility programs. Many companies are reporting surges in production capacity and staff generally experience the presence of cobots as favorable. For example, industry leviathans like BMW and Mercedes-Benz are reaching the conclusion that in many parts of the production process implementing a cobot has been the right decision. Connecting all parts of the production line with full automation solutions is a pipedream. It works only when all steps are perfectly attuned, and in reality this never happens and one misstep can be catastrophic. Whether to hire a human, a robot, or a co-robot is a complex and ever-more pressing decision. Statistical process control is paramount for large organizations to make unbiased data-driven decisions. Determine the key performance indicators, then find the most critical bottlenecks and major opportunities for leaps in production efficiency, product quality, or staff unburdening. Talk to employees for their insights and probe their level of skill and enthusiasm needed for working with their new artificial assistants. Digital transformation should be an exciting shift in the organization and its people, so apply new technological advancements only where it makes sense. Despite common beliefs about robotization, the cobot is an entirely separate product category that can be a surprisingly plug-and-play solution for simple tasks, with programming apps becoming increasingly intuitive. A cobot’s flexibility makes it perfect to run early experiments to help companies find its best spot on the factory floor. Its unbelievable precision, consistency, and level of control generally can make a strong first impression on customers. Not only can cobots increase production capacity while reducing idle time and cycle time to accelerate manufacturing across many vertical markets, but they also enrich the work environment resulting in happier and more involved employees. For many companies, a cobot can be the next logical step in their digital transformation.

Read More

Real-Time Data Collection in Manufacturing: Benefits and Techniques

Article | January 12, 2022

Real-time manufacturing analytics enables the manufacturing base to increase its efficiency and overall productivity in a variety of ways. Production data is an effective means of determining the factory's efficiency and identifying areas where it might be more productive. “Without big data analytics, companies are blind and deaf, wandering out onto the web like deer on a freeway.” – Geoffrey Moore, an American Management Consultant and Author Creating a product-specific data collection may assist you in determining and visualizing what needs to be improved and what is doing well. In this article, we'll look at why manufacturing data collection is vital for your organization and how it may help you improve your operations. Why is Manufacturing Data Collection so Critical? Visibility is the key benefit that every manufacturer gets from manufacturing data collection. By collecting real-time data, or what we refer to as "shop floor data," manufacturers better understand how to assess, comprehend, and improve their plant operations. Manufacturers can make informed decisions based on detailed shop floor data. This is why having precise, real-time production data is critical. “According to Allied Market Research, the worldwide manufacturing analytics market was worth $5,950 million in 2018 and is expected to reach $28,443.7 million by 2026, rising at a 16.5% compound annual growth rate between 2019 and 2026.” For modern manufacturers, the advantages of data collection in manufacturing are numerous. The manufacturing industry benefits from production data and data-driven strategy in the following ways. Substantial reduction in downtime by identifying and addressing the root causes of downtime. It increases manufacturing efficiency and productivity by minimizing production bottlenecks. A more robust maintenance routine that is based on real-time alerts and machine circumstances. Improvements in demand forecasting, supplier scoring, waste reduction, and warehouse optimization reduce supply chain costs. Higher-quality goods that are more in line with customers' wishes and demands depending on how they are utilized in the current world. So, after looking at some of the significant benefits of real-time manufacturing analytics, let’s see what type of data is collected from production data tracking. What Sorts of Data May Be Collected for Production Tracking? Downtime: Operators can record or track downtime for jams, cleaning, minor slowdowns, and stoppages, among other causes, with production tracking software. In the latter scenario, downtime accuracy is optimized by removing rounding, human error, and forgotten downtime occurrences. The software also lets you categorize different types of stops. Changeovers: Changeovers can also be manually recorded. However, changeovers tracked by monitoring software provide valuable data points for analysis, considerably reducing the time required for new configurations. Maintenance Failures: Similar to downtime classification, the program assists in tracking the types of maintenance breakdowns and service orders and their possible causes. This may result in cost savings and enable businesses to implement predictive or prescriptive maintenance strategies based on reliable real-time data. Items of Good Quality: This is a fundamental component of production management. Companies can't fulfill requests for delivery on schedule unless they know what's created first quality. Real-time data collection guarantees that these numbers are accurate and orders are filled efficiently. Scrap: For manufacturers, waste is a significant challenge. However, conventional techniques are prone to overlooking scrap parts or documenting them wrong. The production tracking system can record the number and type of errors, allowing for analysis and improvement. Additionally, it can capture rework, rework time, and associated activities. WIP Inventory: Accurate inventory management is critical in production, yet a significant quantity of material may become "invisible" once it is distributed to the floor. Collecting data on the movement and state of work in progress is critical for determining overall efficiency. Production Schedule: Accurate data collection is essential to managing manufacturing orders and assessing operational progress. Customers' requests may not be fulfilled within the specified lead time if out of stock. Shop floor data gathering provides accurate production histories and helps managers fulfill delivery deadlines. Which Real-time Data Collection Techniques Do Manufacturers Employ? Manufacturers frequently employ a wide range of data collection techniques due to the abundance of data sources. Manual data collection and automated data collection are two of the most common data collection methods. Here are a few examples from both methods: IoT: To provide the appropriate information to the right people at the right time with the correct shop floor insight, IoT (Internet of Things) sensor integration is employed. PLC: The integration of PLC (Programmable Logic Controller) is used to measure and regulate manufacturing operations. HMI: It can provide human context to data by integrating line HMI (Human Machine Interface) systems (such as individual shop terminals like touch screens located on factory floor equipment). SCADA: Overarching management of activities with SCADA (Supervisory Control and Data Acquisition) systems. CNC and Other Machines: Integrating CNC and other machines (both new and older types) to keep tabs on production efficiency and machine well-being is a must these days. Final Words One of the most challenging aspects of shop floor management is determining what to measure and what to overlook. The National Institute of Standards and Technology recently conducted a study on assisting manufacturing operations in determining which data to collect from the shop floor.Additionally, you may utilize the manufacturing data set described above to obtain information from your manufacturing facility and use it strategically to improve operations, productivity, efficiency, and total business revenue in the long term. FAQ What is manufacturing analytics? Manufacturing analytics uses operations and event data and technology in the manufacturing business to assure quality, improve performance and yield, lower costs, and optimize supply chains. How is data collected in manufacturing? Data collection from a manufacturing process can be done through manual methods, paperwork, or a production/process management software system.

Read More

The Top Five Lean Manufacturing Tools for 2022

Article | December 13, 2021

Lean manufacturing is a growing trend that aims to reduce waste while increasing productivity in manufacturing systems. But, unfortunately, waste doesn't add value to the product, and buyers don't want to pay for it. This unusual method pushed Toyota Motor Corporation's industry to become a leading Toyota Production System (TPS). As a result, they are now efficiently producing some of the world's top cars with the least waste and the quickest turnaround. The majority of manufacturers are now using lean management. According to the 2010 Compensation Data Manufacturing report, 69.7% of manufacturing businesses use Lean Manufacturing Practices. Lean tools are the ones that help you in implementing lean practice in your organization. These lean tools assist in managing people and change while solving problems and monitoring performance. Lean Manufacturing technologies are designed to reduce waste, improve flow, improve quality control, and maximize manufacturing resources. What Are the Five Best Lean Manufacturing Tools and How Do They Work? There are roughly 50 Lean Manufacturing tools available in the market. This post will describe 5 of them and their value to your business and its developments. 5S The 5S system promotes efficiency by organizing and cleaning the workplace. To help increase workplace productivity, the system has five basic guidelines (five S's). The five Ss are Sort, Set, Shine, Standardize, and Sustain. 5S improves workplace efficiency and effectiveness by: Sort: Removing unnecessary material from each work area Set: Set the goal of creating efficient work areas for each individual Shine: Maintaining a clean work area after each shift helps identify and resolve minor concerns Standardize: Documenting changes to make other work areas' applications more accessible Sustain: Repeat each stage for continuous improvement 5S is a lean tool used in manufacturing, software, and healthcare. Kaizen and Kanban can be utilized to produce the most efficient workplace possible. Just-In-Time (JIT) manufacturing Just-in-time manufacturing allows manufacturers to produce products only after a customer requests them. This reduces the risk of overstocking or damaging components or products during storage. Consider JIT if your company can operate on-demand and limit the risk of only carrying inventory as needed. JIT can help manage inventory, but it can also hinder meeting customer demand if the supply chain breaks. Kaizen With Kaizen, you may enhance seven separate areas at once: business culture, leadership, procedures, quality, and safety. Kaizen is a Japanese word, means "improvement for the better" or "constant improvement." “Many companies are not willing to change or think they are done once they make a change. But the truth is technology; consumer demands, the way we work, human needs and much more are constantly changing.” – Michael Walton, Director, Industry Executive at Microsoft The idea behind Kaizen is that everyone in the organization can contribute suggestions for process improvement. Accepting everyone's viewpoints may not result in significant organizational changes, but minor improvements here and there will add up over time to substantial reductions in wasted resources. Kanban Kanban is a visual production method that delivers parts to the production line as needed. This lean tool works by ensuring workers get what they need when they need it. Previously, employees used Kanban cards to request new components, and new parts were not provided until the card asked them to. In recent years, sophisticated software has replaced Kanban cards to signal demand electronically. Using scanned barcodes to signify when new components are needed, the system may automatically request new parts. Kanban allows businesses to manage inventory better, decrease unnecessary stock, and focus on the products that must be stored. To reduce waste and improve efficiency, facilities can react to current needs rather than predict the future. Kanban encourages teams and individuals to improve Kanban solutions and overall production processes like Kaizen. Kanban as a lean tool can be used with Kaizen and 5S. PDCA (Plan, Do, Check, Act) Plan-Do-Check-Act (PDCA) is a scientific strategy for managing change. Dr. W. Edwards Deming invented it in the 1950s; hence, it is called the ‘Deming Cycle.’ The PDCA cycle has four steps: Problem or Opportunity: Determine whether a problem or an opportunity exists Do: Make a small test Examine: Look over the test results Act: Take action depending on results How Nestlé Used the Kaizen Lean Manufacturing Tool Nestlé is the largest food corporation in the world, yet it is also a company that practices Lean principles, particularly the Kaizen method. Nestlé Waters used a technique known as value stream mapping, which is frequently associated with Kaizen. They designed a new bottling factory from scratch to guarantee that operations were as efficient as possible. Nestlé has been aiming to make ongoing changes to their processes to reduce waste and the amount of time and materials that can be wasted during their operations. Final Words Lean manufacturing techniques enable many businesses to solve their manufacturing difficulties and become more productive and customer-centric. In addition, useful lean manufacturing tools assist companies in obtaining the anticipated outcomes and arranging their operations in many excellent ways to meet buyer expectations. Hence, gather a list of the top lean manufacturing tools and choose the best fit for your organization to maximize your ROI and address the performance issue that is causing your outcomes to lag. FAQ What are the standard tools in lean manufacturing? Among the more than 50 lean manufacturing tools, Kaizen, 5S, Kanban, Value Stream Mapping, and PDCA are the most commonly used lean manufacturing tools. How to Select the Best Lean Manufacturing Tools for Your Business? Choosing a lean manufacturing tool begins with identifying the issue or lag in your organization that affects overall productivity and work quality. To select the lean device that best meets your company's needs, you must first grasp each one's benefits and implementation techniques. What is included in a Lean 5S toolkit? The lean 5S toolbox contains some essential items for achieving the goal. It comes with a notepad or tablet, a camera, a high-quality flashlight, a tape measure, and a stopwatch. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What are the standard tools in lean manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Among the more than 50 lean manufacturing tools, Kaizen, 5S, Kanban, Value Stream Mapping, and PDCA are the most commonly used lean manufacturing tools." } },{ "@type": "Question", "name": "How to Select the Best Lean Manufacturing Tools for Your Business?", "acceptedAnswer": { "@type": "Answer", "text": "Choosing a lean manufacturing tool begins with identifying the issue or lag in your organization that affects overall productivity and work quality. To select the lean device that best meets your company's needs, you must first grasp each one's benefits and implementation techniques." } },{ "@type": "Question", "name": "What is included in a Lean 5S toolkit?", "acceptedAnswer": { "@type": "Answer", "text": "The lean 5S toolbox contains some essential items for achieving the goal. It comes with a notepad or tablet, a camera, a high-quality flashlight, a tape measure, and a stopwatch." } }] }

Read More

Spotlight

BDR Thermea

De Dietrich Remeha Group and Baxi Group have created BDR Thermea, a new world class company in heating products. BDR Thermea focuses on customer needs regarding innovative climate and hot water solutions and services, offering systems instead of only single products. The strong R&D platform and the financial strength of BDR Thermea make it possible to enhance the existing product range. This focus on R&D and innovation also provides the opportunity to confirm and build on the leadership in the emerging market for low carbon micro combined heat and power products and can support the way BDR Thermea contributes to a sustainable environment.

Events