The New Age of Manufacturing

| March 11, 2019
THE NEW AGE OF MANUFACTURING
Walk across the spotlessly clean and well-lit floors of Pratt & Whitney’s 1 million-square-foot manufacturing plant in North Berwick, Maine, and you’ll pass by dozens of closed-door CNC machines, each the size of a large refrigerator. The machines quietly whir and hum as they turn, mill and grind finished parts for the company’s Geared Turbofan jet engines.

Spotlight

LS Cable & System

LS Cable & System is a Korea based industrial corporation with global operations. Its products comprise power and telecommunication cables and systems, as well as integrated modules and other related industrial materials. LS Cable & System furthermore provides engineering services, installation and commissioning of high voltage and extra high voltage landlines as well as key in hand submarine cabling project execution.

OTHER ARTICLES

It's Time to Redesign Your Business with Manufacturing Analytics

Article | December 21, 2021

Consumer demand has shifted dramatically in recent years, and manufacturers are trying to adapt to this shift. To maintain high product quality, minimize costs, and optimize supply chains, manufacturing analyticshas become essential for manufacturers. Manufacturing analyticsis the process of gathering and analyzing data from various systems, equipment, and IoT devices in real-time to get essential insights. As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity. – Matt Mong Manufacturing analyticscan assist in maintaining production quality, boost performance with high-profit returns, decrease costs, and optimize supply networks. This article will outline manufacturing analyticsand present a list of possible application cases. It will also highlight the benefits of manufacturing analyticsfor any shop floor or factory. Manufacturing analytics: An Overview With manufacturing analytics, we can streamline and speed up the entire process. Data interchange and automation helps in speeding up the production process. Manufacturing analyticsuses predictive manufacturing, big data, Industrial IoT, network virtualization, and machine learningto produce better scalable production solutions. Manufacturing analyticscollects and analyses data from many sources via sensors embedded in machinery to identify areas for improvement. Data is collected and presented in an easy-to-understand structure to illustrate where difficulties emerge throughout the process. In short, manufacturing analyticscollects and analyses large volumes of data to reveal insights that might improve performance. Users can also obtain automated business reports to reply in real-time. Why Manufacturing analytics is Vital for Leading Businesses There are numerous benefits of manufacturing analyticsthat drive any company’s production and overall manufacturing business growth. The benefits of manufacturing analyticsfall into three distinct categories as below. It reduces the overall cost: Analytics may save a significant amount of money if used more efficiently. Labor costs are also reduced due to automation and semi-autonomous machinery. Similarly, preventive and prescriptive maintenance programs may save money while enhancing productivity. It boosts profits for businesses: Manufacturers can respond swiftly to changes in demand using real-time insights in production, inventory management, and demand and supply forecasting. For example, assume the data indicates that they are approaching their maximum capacity. In such instances, they can increase over time, increase capacity, modify procedures, or tweak other production areas to adapt and maintain delivery times. Other unforeseen benefits: There are several advantages to the increased capabilities enabled by manufacturing analytics. These benefits include lower energy use, safer environmental practices, fewer compliance failures, and more customer satisfaction. Five Real-world Applications of Manufacturing Analytics Predictive Maintenance A machine's analytics uses aggregate data from real-time detectors to anticipate when it needs to be replaced or functioning irregularly. This process helps predict machine failure or equipment defects. Analytics can assist in determining a plant's capacity and how many products are produced by the unit in every production cycle, which is helpful in capacity planning. In addition, analytics may help determine the ideal number of units to create over time by considering capacity, sales predictions, and parallel schedules. Predictive analytics solutions can automate maintenance requests and readings that shortens the procedure and reduce maintenance expenses. Product Development Product development is an expensive process in manufacturing. As a result, businesses must invest in R&D to develop new product lines, improve existing models, and generate new value-added services. Earlier, this approach was in place by repeated modeling to get the finest outcome. This approach can now be modeled to a large extent, with the help of data science and technologically superior analytics. Real-world circumstances can be replicated electronically using "digital twins" and other modeling approaches to anticipate performance and decrease R&D expenses. Demand Forecasting Many factors that might help in the plan significant capital expenditures or brief breakdowns can be explained using historical data and a few high-impact variable strategies. For example, consider the seasonality of products like ice cream. As a result, historical market data and a few high-impact factors can help explain numerous variables and plan major capital expenditures or short-term shutdowns. In addition to demand forecasting, predictive analytics incorporates advanced statistical techniques. With predictive analytics, a wide range of parameters, including customer buying behavior, raw material availability, and trade war implications, may be taken into consideration. Warranty Analysis Warranty support may be a load for many manufacturers. Warranties are frequently based on a "one-size-fits-all" approach that is broader. This approach introduces uncertainty and unanticipated complications into the equation. Products may be modified or updated to decrease failure and hence expense by using data science and obtaining information from active warranties in the field. It can also lead to better-informed iterations for new product lines to minimize field complaints. Managing Supply Chain Risks Data may be recorded from commodities in transit and sent straight from vendor equipment to the software platform, helping to enable end-to-end visibility in the supply chain. Manufacturing analyticsallows organizations to manage their supply chains like a "control tower," directing resources to speed up or slow down. They may also order backup supplies and activate secondary suppliers when demand changes. Final Words Businesses should adapt to changing times. Using analytics in manufacturinghas altered the business industry and spared it from possible hazards while boosting production lines. Industry 4.0's route has been carved. Manufacturing analyticsis the key to true Industry 4.0, and without it, the data produced by clever IoT devices is meaningless. The future is data-driven, and success will go to those who are ready to adopt it. The faster adoption, the sooner firms go ahead of the competition. FAQ How can data analytics help manufacturers? Data analytics tools can help manufacturers analyze machine conditions and efficiency in real-time. It enables manufacturers to do predictive maintenance, something they were previously unable to accomplish. Why is data so crucial in manufacturing? Data helps enhance manufacturing quality control. Manufacturers can better understand their company's performance and make changes by collecting data. Data-driven manufacturing helps management to track production and labor time, improve maintenance and quality, and reduce business and safety concerns. What is Predictive Manufacturing? Predictive manufacturing uses descriptive analytics and data visualization to offer a real-time perspective of asset health and dependability performance. In addition, it helps factories spot quality issues and takes remedial action quicker by eliminating the waste and the cost associated with it.

Read More

Technologies That Will Keep You Ahead in the Manufacturing Realm

Article | November 20, 2021

Modern manufacturing methods are pioneering and adopting manufacturing industry advancements. To remain competitive in the present era and provide the most excellent industry solutions to your organization and target customer group in 2022, you must employ new manufacturing technologies in your manufacturing processes. Additionally, embracing current technologies is the ideal approach to tackle the industry's current challenges such as workplace safety, digitalization of operations, and a lack of skilled workers. This article will discuss some of the leading manufacturing technologies that transform traditional manufacturing facilities into smart manufacturing factories. So, let us begin. Manufacturing Technology & Innovations for 2022 To better understand industry 4.0, let's look at some of the manufacturing technologies that will dominate the manufacturing industry in 2022. 3D Printing Numerous industries, including aerospace, healthcare, electronics, and architecture, utilize 3D printing in manufacturing. It is the most widely used technology across industries and will remain so in 2022 and in the years to come. We may also anticipate more advancements in this technology to help overcome current barriers to 3D printing adoption, including equipment costs, material constraints, lengthier manufacturing times, a lack of knowledge, and legal issues. Additionally, it would assist manufacturers in overcoming current manufacturing challenges such as increasing product demand, increasing automation, and locating and retaining the workforce in manufacturing plants. It is vital to incorporate 3D technology into production processes to achieve greater precision and accuracy in manufacturing. IoT The Internet of Things is a critical component of the industry 4.0 revolution. It has altered the environment of data collection and analysis across sectors. For example, the Internet of Things is assisting manufacturers in better understanding manufacturing and supply chain operations, forecasting product demand, and boosting customer experiences. Implementing IoT in your manufacturing plant will also help you avoid production delays and increase the performance of your production lines. Additionally, it will decrease equipment downtime and improve process efficiency. It also enhances worker safety and enables more effective labor management. To begin implementing IoT in your manufacturing plant, you must first examine your manufacturing processes and research how other organizations have implemented IoT in their manufacturing processes or products. This method will assist you in determining the optimal location to begin integrating the IoT in your manufacturing plants and transforming them into smart ones. “Once you start to look at yourself in the right way and realize that projects are at the core of your business, it is easy to see how you should use technology to support your business.” – Matt Mong, VP of Market Innovation and Project Business Evangelist at Adeaca. GD & T The model created in the CAD program for any product is not exactly replicated with the exact dimensions during the production procedures. Thus, manufacturers or engineers utilize GD&T (Geometric Dimension &Tolerancing) to manage and communicate the permissible variation within a product assembly to manufacturing partners and inspectors. GD&T is a programming language that enables developers and inspectors to optimize functionality without incurring additional costs. The primary advantage of GD&T is that it expresses the design intent rather than the final geometry. However, as with a vector or formula, it is a representation of the actual item. AR & VR The two primary transformation aspects in the industry 4.0notion are augmented reality (AR) and virtual reality (VR). AR technology in manufacturing enables firms to operate more efficiently by reducing production time. Additionally, it discovers and resolves manufacturing process difficulties. Virtual reality technology benefits the industrial business in a variety of ways. It enables product designers to mimic their prototypes or models using powerful virtual reality software. This enables them to correct faults at the first stage of production and minimize production time and cost. Additionally, the technology provides additional benefits, such as increased workplace productivity and safety. ERP Enterprise Resource Planning (ERP) refers to a comprehensive end-to-end software solution that is used across sectors. It assists the manufacturing business in successfully maintaining production processes and other operational data by avoiding numerous roadblocks along the way. ERP technology enables enterprises to improve process efficiency and product quality by tackling industry-specific difficulties such as insufficient data, operation integration, inventory control, supply chain management, and on-time delivery. Discover How John Deere Manufactured Their Tractors Using Cutting-edge Technologies John Deere is a significant firm that embraces innovation and the Internet of Things. The company integrates Internet of Things sensors, wireless communication, and intelligent land management systems. It further integrates IoT tools into its manufacturing process, bridging the gap between technologies. Additionally, the company is a pioneer in GPS technology. Its most modern technology, which it incorporates into tractors, is accurate to within two centimeters. Additionally, the organization has implemented telemetry technology for predictive maintenance. Final Words Manufacturing innovations are assisting manufacturers in modernizing their traditional manufacturing processes. Modern manufacturing is equipped with modern technologies that aim to improve the processes and goods, increasing the manufacturers' commercial revenues. So, to remain competitive in this age of technological innovation, manufacturers must update their manufacturing processes to remain relevant in today's manufacturing world. FAQ What is manufacturing innovation? Manufacturing innovation includes new technology, supply chain modifications, and product and process improvements. As a result, businesses can benefit significantly from innovation and typically surpass their competitors. Which technologies are considered to be a component of advanced manufacturing? 3–D printing, robotics, IoT, nanotechnology, cloud computing, robotics, and big data are the significant components of advanced manufacturing. How are cutting-edge technologies assisting the manufacturing sector? The cutting-edge technology can precisely estimate demand to set production objectives, analyze machine data to predict when parts will break before a human operator can detect, and more. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What is manufacturing innovation?", "acceptedAnswer": { "@type": "Answer", "text": "Manufacturing innovation includes new technology, supply chain modifications, and product and process improvements. As a result, businesses can benefit significantly from innovation and typically surpass their competitors." } },{ "@type": "Question", "name": "Which technologies are considered to be a component of advanced manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "3–D printing, robotics, IoT, nanotechnology, cloud computing, robotics, and big data are the significant components of advanced manufacturing." } },{ "@type": "Question", "name": "How are cutting-edge technologies assisting the manufacturing sector?", "acceptedAnswer": { "@type": "Answer", "text": "The cutting-edge technology can precisely estimate demand to set production objectives, analyze machine data to predict when parts will break before a human operator can detect, and more." } }] }

Read More

Top 5 Manufacturing Applications of Machine Vision

Article | October 20, 2021

Machine vision is becoming increasingly prevalent in manufacturing daily across industries. The machine vision manufacturing practice provides image-based automated inspection and analysis for various applications, including automatic inspection, process control, and robot guiding, often found in the manufacturing business. This breakthrough in manufacturing technology enables producers to be more innovative and productive to meet customer expectations and deliver the best products on the market. A renowned industry leader Mr. Matt Mongonce conveyed in an interview with Media7, As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity -Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca. Why is Machine Vision so Critical? The machine vision manufacturing process is entirely automated, with no human intervention on the shop floor. Thus, in a manufacturing process, machine vision adds significant safety and operational benefits. Additionally, it eliminates human contamination in production operations where cleanliness is critical. For instance, the healthcare business cannot afford human contamination in some circumstances to ensure the safety of medicines. Second, the chemical business is prohibited from allowing individuals to come into touch with chemicals for the sake of worker safety. Thus, machine vision is vital in these instances, so it is critical to integrate machine vision systems into your production process. Machine Vision Application Examples To better understand how businesses are utilizing machine vision in production, we will look at five cases. Predictive Upkeep Even a few seconds of production line downtime might result in a significant financial loss in the manufacturing industry. Machine vision systems are used in industrial processes to assist manufacturers in predicting flaws or problems in the production line before the system failure. This machine vision capability enables manufacturing processes to avoid breakdowns or failures in the middle of the manufacturing process. How is FANUC America Corporation Avoiding the Production Line Downtime with ROBOGUIDE and ZDT? FANUC is a United States-based firm that is a market leader in robotics and ROBOMACHINE technology, with over 25 million units deployed worldwide. In addition, the company's professionals have created two products that are pretty popular in the manufacturing industry: ROBOGUIDE and ZDT (Zero Down Time). These two standout products assist manufacturers in developing, monitoring, and managing production line automation. As a result, producers can enhance production, improve quality, and maximize profitability while remaining competitive. Inspection of Packages To ensure the greatest possible quality of products for their target consumer groups, manufacturers must have a method in place that enables them to inspect each corner of their product. Machine vision improves the manufacturing process and inspects each product in detail using an automated procedure. This technology has been used in many industries, including healthcare, automation, and electronics. Manufacturers can detect faults, cracks, or any other defect in the product that is not visible to the naked eye using machine vision systems. The machine vision system detects these faults in the products and transmits the information to the computer, notifying the appropriate person during the manufacturing process. Assembly of Products and Components The application of machine vision to industrial processes involves component assembly to create a complete product from a collection of small components. Automation, electronics manufacturing, healthcare (medicine and medical equipment manufacturing), and others are the industries that utilize the machine vision system in their manufacturing process. Additionally, the machine vision system aids worker safety during the manufacturing process by enhancing existing safety procedures. Defect Elimination Manufacturers are constantly endeavoring to release products that are devoid of flaws or difficulties. However, manually verifying each product is no longer practicable for anybody involved in the manufacturing process, as production counts have risen dramatically in every manufacturing organization. This is where machine vision systems come into play, performing accurate quality inspections and assisting producers in delivering defect-free items to their target clients. Barcode Scanning Earlier in the PCB penalization process, where numerous identical PCBs were made on a single panel, barcodes were used to separate or identify the PCBs manually by humans. This was a time-consuming and error-prone process for the electronics manufacturing industry. This task is subsequently taken over by a machine vision system, in which each circuit is segregated and uniquely identified using a robotics machine or a machine vision system. The high-tech machine vision system "Panel Scan" is one example of a machine vision system that simplifies the PCB tracing procedure. Final Words The use of machine vision in the manufacturing business enables firms to develop more accurate and complete manufacturing processes capable of producing flawless products. Incorporating machine vision into manufacturing becomes a component of advanced manufacturing, which is projected to be the future of manufacturing in 2022. Maintain current production trends and increase your business revenue by offering the highest-quality items using a machine vision system. FAQ What is the difference between computer vision and machine vision? Traditionally, computer vision has been used to automate image processing, but machine vision is applied to real-world interfaces such as a factory line. Where does machine vision come into play? Machine vision is critical in the quality control of any product or manufacturing process. It detects flaws, cracks, or any blemishes in a physical product. Additionally, it can verify the precision and accuracy of any component or part throughout product assembly. What are the fundamental components of a machine vision system? A machine vision system's primary components are lighting, a lens, an image sensor, vision processing, and communications. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What is the difference between computer vision and machine vision?", "acceptedAnswer": { "@type": "Answer", "text": "Traditionally, computer vision has been used to automate image processing, but machine vision is applied to real-world interfaces such as a factory line." } },{ "@type": "Question", "name": "Where does machine vision come into play?", "acceptedAnswer": { "@type": "Answer", "text": "Machine vision is critical in the quality control of any product or manufacturing process. It detects flaws, cracks, or any blemishes in a physical product. Additionally, it can verify the precision and accuracy of any component or part throughout product assembly." } },{ "@type": "Question", "name": "What are the fundamental components of a machine vision system?", "acceptedAnswer": { "@type": "Answer", "text": "A machine vision system's primary components are lighting, a lens, an image sensor, vision processing, and communications." } }] }

Read More

The Top Five Lean Manufacturing Tools for 2022

Article | December 13, 2021

Lean manufacturing is a growing trend that aims to reduce waste while increasing productivity in manufacturing systems. But, unfortunately, waste doesn't add value to the product, and buyers don't want to pay for it. This unusual method pushed Toyota Motor Corporation's industry to become a leading Toyota Production System (TPS). As a result, they are now efficiently producing some of the world's top cars with the least waste and the quickest turnaround. The majority of manufacturers are now using lean management. According to the 2010 Compensation Data Manufacturing report, 69.7% of manufacturing businesses use Lean Manufacturing Practices. Lean tools are the ones that help you in implementing lean practice in your organization. These lean tools assist in managing people and change while solving problems and monitoring performance. Lean Manufacturing technologies are designed to reduce waste, improve flow, improve quality control, and maximize manufacturing resources. What Are the Five Best Lean Manufacturing Tools and How Do They Work? There are roughly 50 Lean Manufacturing tools available in the market. This post will describe 5 of them and their value to your business and its developments. 5S The 5S system promotes efficiency by organizing and cleaning the workplace. To help increase workplace productivity, the system has five basic guidelines (five S's). The five Ss are Sort, Set, Shine, Standardize, and Sustain. 5S improves workplace efficiency and effectiveness by: Sort: Removing unnecessary material from each work area Set: Set the goal of creating efficient work areas for each individual Shine: Maintaining a clean work area after each shift helps identify and resolve minor concerns Standardize: Documenting changes to make other work areas' applications more accessible Sustain: Repeat each stage for continuous improvement 5S is a lean tool used in manufacturing, software, and healthcare. Kaizen and Kanban can be utilized to produce the most efficient workplace possible. Just-In-Time (JIT) manufacturing Just-in-time manufacturing allows manufacturers to produce products only after a customer requests them. This reduces the risk of overstocking or damaging components or products during storage. Consider JIT if your company can operate on-demand and limit the risk of only carrying inventory as needed. JIT can help manage inventory, but it can also hinder meeting customer demand if the supply chain breaks. Kaizen With Kaizen, you may enhance seven separate areas at once: business culture, leadership, procedures, quality, and safety. Kaizen is a Japanese word, means "improvement for the better" or "constant improvement." “Many companies are not willing to change or think they are done once they make a change. But the truth is technology; consumer demands, the way we work, human needs and much more are constantly changing.” – Michael Walton, Director, Industry Executive at Microsoft The idea behind Kaizen is that everyone in the organization can contribute suggestions for process improvement. Accepting everyone's viewpoints may not result in significant organizational changes, but minor improvements here and there will add up over time to substantial reductions in wasted resources. Kanban Kanban is a visual production method that delivers parts to the production line as needed. This lean tool works by ensuring workers get what they need when they need it. Previously, employees used Kanban cards to request new components, and new parts were not provided until the card asked them to. In recent years, sophisticated software has replaced Kanban cards to signal demand electronically. Using scanned barcodes to signify when new components are needed, the system may automatically request new parts. Kanban allows businesses to manage inventory better, decrease unnecessary stock, and focus on the products that must be stored. To reduce waste and improve efficiency, facilities can react to current needs rather than predict the future. Kanban encourages teams and individuals to improve Kanban solutions and overall production processes like Kaizen. Kanban as a lean tool can be used with Kaizen and 5S. PDCA (Plan, Do, Check, Act) Plan-Do-Check-Act (PDCA) is a scientific strategy for managing change. Dr. W. Edwards Deming invented it in the 1950s; hence, it is called the ‘Deming Cycle.’ The PDCA cycle has four steps: Problem or Opportunity: Determine whether a problem or an opportunity exists Do: Make a small test Examine: Look over the test results Act: Take action depending on results How Nestlé Used the Kaizen Lean Manufacturing Tool Nestlé is the largest food corporation in the world, yet it is also a company that practices Lean principles, particularly the Kaizen method. Nestlé Waters used a technique known as value stream mapping, which is frequently associated with Kaizen. They designed a new bottling factory from scratch to guarantee that operations were as efficient as possible. Nestlé has been aiming to make ongoing changes to their processes to reduce waste and the amount of time and materials that can be wasted during their operations. Final Words Lean manufacturing techniques enable many businesses to solve their manufacturing difficulties and become more productive and customer-centric. In addition, useful lean manufacturing tools assist companies in obtaining the anticipated outcomes and arranging their operations in many excellent ways to meet buyer expectations. Hence, gather a list of the top lean manufacturing tools and choose the best fit for your organization to maximize your ROI and address the performance issue that is causing your outcomes to lag. FAQ What are the standard tools in lean manufacturing? Among the more than 50 lean manufacturing tools, Kaizen, 5S, Kanban, Value Stream Mapping, and PDCA are the most commonly used lean manufacturing tools. How to Select the Best Lean Manufacturing Tools for Your Business? Choosing a lean manufacturing tool begins with identifying the issue or lag in your organization that affects overall productivity and work quality. To select the lean device that best meets your company's needs, you must first grasp each one's benefits and implementation techniques. What is included in a Lean 5S toolkit? The lean 5S toolbox contains some essential items for achieving the goal. It comes with a notepad or tablet, a camera, a high-quality flashlight, a tape measure, and a stopwatch. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What are the standard tools in lean manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Among the more than 50 lean manufacturing tools, Kaizen, 5S, Kanban, Value Stream Mapping, and PDCA are the most commonly used lean manufacturing tools." } },{ "@type": "Question", "name": "How to Select the Best Lean Manufacturing Tools for Your Business?", "acceptedAnswer": { "@type": "Answer", "text": "Choosing a lean manufacturing tool begins with identifying the issue or lag in your organization that affects overall productivity and work quality. To select the lean device that best meets your company's needs, you must first grasp each one's benefits and implementation techniques." } },{ "@type": "Question", "name": "What is included in a Lean 5S toolkit?", "acceptedAnswer": { "@type": "Answer", "text": "The lean 5S toolbox contains some essential items for achieving the goal. It comes with a notepad or tablet, a camera, a high-quality flashlight, a tape measure, and a stopwatch." } }] }

Read More

Spotlight

LS Cable & System

LS Cable & System is a Korea based industrial corporation with global operations. Its products comprise power and telecommunication cables and systems, as well as integrated modules and other related industrial materials. LS Cable & System furthermore provides engineering services, installation and commissioning of high voltage and extra high voltage landlines as well as key in hand submarine cabling project execution.

Events