The Mayo Clinic’s 3D Printing Accomplishments

| June 12, 2019
THE MAYO CLINIC’S 3D PRINTING ACCOMPLISHMENTS
Ken Burns 2018 movie documentary, The Mayo Clinic: Faith - Hope - Science, details the journey of The Mayo Clinic, from the vision that started it all to all of its accomplishments to date. In the late 19th century, English immigrant physician William Worrall Mayo, his sons, and the nearby Sisters of Saint Francis built the Mayo Clinic flagship in Rochester, Minnesota.

Spotlight

Southwest Products

Southwest Products brings decades of experience manufacturing and designing custom service vehicles, industrial tanks, and power generation solutions for customers across the world. In addition to the company’s manufacturing capabilities, Southwest Products is a leading distributor of new and remanufactured gas and diesel engines.

OTHER ARTICLES

AGV ROI Starts with a Delivery Commitment

Article | January 4, 2022

So much emphasis has been placed on features, advantages, and benefits; too little attention has been paid to delivery dates. The best automation solution on paper means nothing if it cannot be delivered in 2022. Selling the sexy sizzle of new, clever, even remarkable AGVs means nothing if manufacturers and distribution centers cannot take delivery of the product until 2023. Throughout industrial manufacturing and distribution the lead time from many AGV manufacturers is more than a year. That means product ordered in Q1 2022 will not be delivered until the following year. That is an absurd lead time and reflects poor planning and unnecessary supply chain constraints.

Read More

Additive Manufacturing: A Ground-breaking Change to Empower Industry 4.0

Article | November 20, 2021

Advanced manufacturing enables the concept of industry 4.0 and represents a significant milestone in the manufacturing industry. Additive manufacturing is a critical component of the industry 4.0 concept, propelling the industry to new heights of innovation. In various fields that are not immediately related to industry 4.0 or manufacturing, additive manufacturing has alternatively been referred to as 3D printing. The numerous advantages of additive manufacturing, such as reduced cost and time, are boosting its popularity and use in manufacturing and other industries. “Digital technology is so empowering on so many fronts, but for it to be empowering, it must be for everyone.” – Michael Walton, Director, Industry Executive (Manufacturing) at Microsoft. The global market of additive manufacturing is anticipated to increase at a 14.42 percent compound annual growth rate from USD 9.52 billion in 2020 to USD 27.91 billion in 2025. According to this market research, the future of 3D printing or additive manufacturing is quite bright in the coming years, and we will see widespread application across industries. First, let us understand the idea of additive manufacturing and its benefits to various industries. Concept of Additive Manufacturing Additive manufacturing is building a real thing from a three-dimensional computer model, often by successively layering a material. This technique utilizes computer-aided design (CAD) software or 3D object scanners to command devices to deposit material in exact geometric shapes layer by layer. As the name implies, additive manufacturing involves the addition of material to produce an object. Additive Manufacturing Benefits Produces Fewer Scraps and Trash When we compare additive manufacturing to traditional manufacturing techniques such as milling or turning, additive manufacturing adds only the amount of material required to build a product. As a result, it generates less waste and conserves scarce resources. Reduces the Time and Cost of Prototyping Making a product prototype is now faster, easier, and cheaper. Other production processes, like milling, have high setup and material costs. Prototyping is less expensive and takes less time, so you can quickly produce, test, and modify. It also shows practically instant verification of progress done. It Encourages the Digitalization of Businesses Continuous and effective communication between devices, machines, and robots is required for additive manufacturing. However, this is only achievable with effective digitization of production processes. As a result, businesses invest more in digital and IoT, a prerequisite for Industry 4.0. It Simplifies the Assembling Process by Condensing it into a Single Component Additive manufacturing in Industry 4.0 also simplifies the production process, especially product assembly. A traditional component requires numerous manufacturing procedures. This increases material and labor expenses as well as production time. However, additive manufacturing allows you to print the group in one piece. The Top Three Industries That Make the Most Use of Additive Manufacturing Additive manufacturing is presently used in a variety of industries. However, specific sectors make the best use of it. Thus, we will examine the industries embracing additive manufacturing technology and emerging with new life easing solutions. Healthcare In the healthcare industry, dentistry is the critical application of additive manufacturing. Technology helps it create bridges, crowns, braces, and dentures, always in high demand. Additive manufacturing has also been used to create tissues and organs, surgical tools, patient-specific surgical models, and personalized prosthetics. For example, many medical equipment companies employ 3D printing to build patient-specific organ replicas that surgeons can practice before completing complex surgeries. Aerospace Additive manufacturing is utilized to fabricate metal brackets that serve as structural components within airplanes. Prototypes are increasingly being printed in three dimensions, allowing designers to fine-tune the shape and fit of finished parts. In addition, interior airplane components such as cockpit dashboards and door handles are manufactured using 3D printing services. Automotive 3D printing can manufacture molds and thermoforming tools, grips, jigs, and fixtures for the automotive industry. Automakers utilize additive printing to customize parts for specific vehicles or drivers (e.g., seats for racing cars). An appealing colored dashboard, efficient fuel systems, and complicated braking mechanisms are all possible with 3D printing in the automotive industry. Therefore, it is best suited for pre-production, manufacture, and modification of automotive parts. How Does NASA use additive manufacturing in its space projects? The space environment has always been unpredictable, and scientists must be adequately prepared before embarking on any space mission. They must consider the durability and weight of all the objects they propose to transport into space. To land any object on a planet that does not have a flat surface or similar weather conditions to earth, scientists must design each object with these considerations in mind. “You always want it to be as light as possible, but you also want it to be strong enough.” -Chris Chapman, NASA Test Engineer It is not conceivable to make items capable of dealing with all the changes on other planets and achieving these project objectives using conventional materials and production processes. However, scientists do require a technique that will enable them to manufacture lighter and stronger objects for their space missions. 3D printing has played a significant part in meeting this demand and has provided space projects to manufacture objects that would withstand any unexpected events during space missions. For example, NASA employed 3D-printed metal components in their Mars project. NASA's specialized engineers are utilizing additive manufacturing to create rocket engines and possible Moon and Mars outposts. NASA used the 11 3D printed metal components on its Mars mission as well. It employed 3D printed components for the first time in the Curiosity rover, which landed on Mars in 2012. It was a successful project, and NASA has since begun employing 3D printed parts in its space missions to make machines lighter while remaining robust and functional. Final Words Additive manufacturing technology is making a real difference in the manufacturing process, and it is becoming the trending technology in the manufacturing industry. The benefits of additive manufacturing make the manufacturing process more advanced, easy, and customer-oriented. Additive manufacturing is the major transformation in the manufacturing industry and will take it to new heights of precision. FAQ Why is additive manufacturing critical? Additive manufacturing reduces the time and cost of prototyping and reduces the scraps amount during the manufacturing process of any object. In addition, it simplifies multiple processes from various industries. Are additive manufacturing and 3D printing the same? Yes, additive manufacturing and 3D printing are the same processes with different names as per the choice of the different industries. For example, in some industries such as space missions, It is also referred to as Fused Deposition Modelling (FDM). Which is the most applied sector for additive manufacturing? Healthcare is the industry that utilizes additive manufacturing technology the most. It also helps medical practitioners practice surgery on any critical body part with its 3D printed model from human tissues. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "Why is additive manufacturing critical?", "acceptedAnswer": { "@type": "Answer", "text": "Additive manufacturing reduces the time and cost of prototyping and reduces the scraps amount during the manufacturing process of any object. In addition, it simplifies multiple processes from various industries." } },{ "@type": "Question", "name": "Are additive manufacturing and 3D printing the same?", "acceptedAnswer": { "@type": "Answer", "text": "Yes, additive manufacturing and 3D printing are the same processes with different names as per the choice of the different industries. For example, in some industries such as space missions, It is also referred to as Fused Deposition Modelling (FDM)." } },{ "@type": "Question", "name": "Which is the most applied sector for additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Healthcare is the industry that utilizes additive manufacturing technology the most. It also helps medical practitioners practice surgery on any critical body part with its 3D printed model from human tissues." } }] }

Read More

The Future of Additive Manufacturing: Trends and Predictions

Article | January 21, 2022

3D printing technology and its role in future manufacturing are grabbing the interest of industry experts. In terms of elevating future products, future additive manufacturing has a lot to offer the business. Additive manufacturing is developing and stretching its wings on a daily basis, becoming an integral part of every industry, including manufacturing, healthcare, education, and more. In this article, we'll shed some light on the 3D printing future trends, which will assist the business in deepening its impact across industries. Furthermore, we will explore whether the additive manufacturing business is worth investing in as well as who the major players are that have already invested in the future of 3D printing. Future Trends in the Additive Manufacturing Industry Enhanced Machine Connectivity Making AM solutions (including software and hardware) easier to integrate and connect to the factory floor is one of the key AM trends we predict to advance in the coming years. It has been a long time since the AM hardware market has been filled with closed, or proprietary, systems. These systems generally function with materials and software given or approved by the machine OEM and are not easily integrated with third-party alternatives. Closed systems are important for process dependability, but they also restrict collaboration and connectivity. Companies expanding their AM operations will need to connect their machines and software to their production environments. When it comes to additive manufacturing, using siloed solutions is a surefire way to fail. Importantly, we see hardware manufacturers increasingly focusing on solutions that can be integrated with the production floor. For example, a 3D printing market leader like Stratasys is a good illustration of the trend. In December, the business announced an extension of its previously closed machines' connection.Consumers may now integrate and control their additive production using software programs of their choosing, not just Stratasys' systems. For AM facilities, system connectivity is no longer an option. It's exciting to see the AM industry players recognize and solve this requirement. AM and AI Continue to Converge AM growth is incorporating AI and machine learning. AI can help with material development, machine setup, part design, and workflow automation. So, in the future, we anticipate seeing more AI and AM technology integration. Combined with AM systems, AI will improve process control and accuracy. For example, Inkbit is currently working on an AI-powered polymer vision system. This technology can scan 3D printing layers and anticipate material behavior during printing. Generative design, already generally recognized as a key digital advance in AM, may tremendously benefit from AI and machine learning. It has so far been utilized to improve load routes when strength and stiffness are dominant. It can also be utilized to optimize thermal or vibration. AI and machine learning will advance generative design, allowing new concepts to be completely suited to AM.While we may be a few years away from fully developing the capacity to automatically adapt designs to process, we anticipate significant breakthroughs this year that will bring us closer. AM Will Drive Decentralization In order to future-proof their supply chains, many manufacturers are following new supply chain models and technology that allow them to cut prices or switch goods more easily. Increasing flexibility and agility will necessitate distributed, localized production, assisted by additive manufacturing.To reduce the number of steps required to manufacture complex metal or polymer structures, shorten lead times, and enable digital inventory management, digital inventory management can be automated. These advantages make it ideal for the distributed manufacturing model. We believe that in the near future, more businesses will actively explore distributed manufacturing with AM. According to a recent HP survey, 59% of organizations are now considering hybrid models, while 52% are looking into localized digital manufacturing. 3D Printing Future: Major Predictions In Jabil's 2021 3D printing trends survey of over 300 decision-makers, 62% of participants claim their organization is actively using additive manufacturing for production of their product components, up from 27% in 2017. Many such manufacturers are on the lookout for the latest additive manufacturing trends and forecasts. So let's begin. Increasing Flexibility and Customization Customized goods are a popular consumer trend, impacting several sectors. Rather than buying a mass-produced item, customers are increasingly demanding a custom-made item that meets their specific needs. Additive manufacturing's low-volume production capabilities simply enable personalization and customization. 3D printing allows for more responsive design options, particularly for additive manufacturing. Manufacturers can afford to make smaller batches, allowing designers and engineers to alter product ideas and develop them cost-effectively when inspiration strikes, the public mood is understood, or customer feedback drops in. Materials Drive the Future of Digital As the additive manufacturing ecosystem grows, the importance of materials cannot be overstated. Besides high equipment costs, materials and limited additive manufacturing ecosystems have hindered the 3D printing industry's growth. The market is flooded with 3D printing materials, but few are advanced enough to fulfill industry standards.Due to volume constraints in most sectors, suppliers and manufacturers aren't motivated to develop innovative materials for new uses. However, the future of 3D printing is in engineered and application-specific materials. Various sectors have unique difficulties that demand unique solutions. New designed materials will revolutionize new uses, including highly regulated sectors. Industries will reward those who can promptly introduce 3D printing materials adapted to specific industrial and engineering needs. This will allow more 3D printing applications to be supplied and the whole digital manufacturing flywheel to start spinning. 3D Printing and a Sustainable Future Finally, additive manufacturing promotes sustainability and conservation. Besides decreasing trash, 3D printing saves energy. The Metal Powder Industries Federation studied the difference between making truck gear using subtractive manufacturing (17 steps) and additive manufacturing (6 steps). 3D printing uses less than half the energy it takes to produce the same product. 3D printing also reduces the need for moving products and materials, reducing the amount of carbon emitted into the environment. So we can see that digital and additive solutions already contribute to a more sustainable future. Is Investment in the Future of Additive Manufacturing Worth It? In recent years, there has been an explosion of investment in industrial 3D printing. Hundreds of millions of dollars have flowed into the industry in recent years, assisting new businesses. Desktop Metal ($160 million), Markforged ($82 million), and 3D Hubs ($18 million) have all received significant funding in the past. According to a recent report and data analysis, the global additive manufacturing market will hit USD 26.68 billion by 2027. A rising level of government support for additive manufacturing across regions is driving market demand. For example, America Makes, the foremost national initiative in the US since 2012 dedicated to additive manufacturing (3D printing future technology), received USD 90 million in support from the government, commercial, and non-profit sectors. Given the industry's expenditures and the expanding need for 3D printing, investing in the additive manufacturing industry or 3D printing is certainly encouraged. Final Words Additive manufacturing is being used in practically every industry, and companies are researching how technology might be used in their specific fields. The numerous advantages and sustainability that 3D printing provides are the major benefits that manufacturers and other industry professionals notice with 3D printing.Future manufacturing will be significantly more accurate and simple to run thanks to 3D printing technologies. Considering the trends and projections listed above, you may have a better understanding of 3D printing's future and make an informed investment decision. FAQ What is the future of 3D printing? 3D printing, or additive manufacturing, has the potential to empower everything from food to coral reefs. 3D printers may soon be seen in homes, companies, disaster zones, and perhaps even outer space. Why is 3D printing important to society? 3D printing results in waste reduction and so eliminates the need for periodic waste reduction, reuse, and recycling. So it helps society with no carbon footprint. Why is it known as additive manufacturing? The term "additive manufacturing" refers to the fact that the building process adds layers rather than removes raw materials.

Read More

This Is How You Can Lower Your Manufacturing Overhead

Article | December 21, 2021

When it comes to developing a budget for the following financial year of your manufacturing business, many operations managers start with direct labor and material expenditures. But, what about manufacturing overhead costs? Manufacturing overhead is any expense not directly tied to a factory's production. Therefore, the indirect costs in manufacturing overhead can also be called factory overhead or production overhead. Outsourcing and globalization of manufacturing allows companies to reduce costs, benefits consumers with lower-cost goods and services, and causes economic expansion that reduces unemployment and increases productivity and job creation. – Larry Elder So, this article focuses on some highly effective overhead cost reduction methods that would help you build a healthy budget for the following year. Manufacturing Overhead Costs: What Is Included? Everything or everyone within the factory that isn't actively producing items should be considered overhead. The following are some of the variables that are considered overhead costs: Depreciation of equipment and productionfacilities Taxes, insurance, and utilities Supervisors, maintenance, quality control, and other on-site personnel who aren't producing signs Indirect supply from light bulbs to toilet paper is also included in the overhead cost. Manufacturing Overhead Costs: What Is Excluded? Everything or everyone within or outside the factory that is actively producing items should be excluded from the overhead costs. Factory overhead does not include the following: Product materials Employee costs for those making the goods daily External administrative overhead, such as a satellite office or human resources Costs associated with C-suite employees Expenses associated with sales and marketing - include pay, travel, and advertising How to Calculate Overhead Costs in Manufacturing To know the manufacturing overhead requires calculating the manufacturing overhead rate. The formula to calculate the manufacturing overhead rate i.e. MOR is basic yet vital. To begin, determine your overall manufacturing overhead expenses. Then, add up all the monthly indirect expenditures that keep manufacturing running smoothly. Then you can calculate the Manufacturing Overhead Rate (MOR). This statistic shows you your monthly overhead costs as a percentage. To find this value, divide Total Manufacturing Overhead Cost (TMOC) by Total Monthly Sales (TMS) and multiply it by 100. The final formula will be: Assume your manufacturing overhead expensesare $50,000 and your monthly sales are $300,000. You get.167 when you divide $50,000 by $300,000. Then increase that by 100 to get your monthly overhead rate of 16.7%. This means your monthly overhead expenditures will be 16.7% of your monthly income. Being able to forecast and develop better solutions to decrease production overhead. Five Ways to Reduce Manufacturing Overhead Costs A variety of strategies may be used by manufacturing organizations to reduce their overhead costs. Here is a summary of some of the most important methods for reducing your manufacturing overhead costs. Value Stream Mapping – A Production Plant Process Layout A value stream map depicts the entire manufacturing process of your plant. Everything from raw material purchase through client delivery is detailed here. The value stream map provides you with a complete picture of the profit-making process. This overhead cost-cuttingmethod is listed first for a reason because every effort to reduce manufacturing overhead costsstarts with a value stream map. Lean manufacturingis also one of the techniques of eliminating unnecessary time, staff, and work that is not necessary for profit and has gained undue favor in the manufacturing process. You must first create a value stream map of the whole manufacturing process for this technique to work. Once the lean manufacturing precept is established, the following strategies for decreasingmanufacturing overhead expenses can be examined. Do Not Forget Your Back Office Management Before focusing on factory floor cost reduction techniques, remember that your back offices, where payment processing and customer contacts occur, may also be simplified and increase profitability. Fortunately, automation can achieve this profitability at a cheap cost. Manufacturers increasingly use robotic process automation (RPA) to sell directly to customers rather than rely on complex supply networks. This automation eliminates costly human mistakes in data input and payment processing by automatically filling forms with consumer data. Moreover, the time saved from manual data input (and rectifying inevitable human errors) equates to decreased labor expenses and downtime. Automating Your Manufacturing Plant For a long time, manufacturers saw factory automation as a game-changer. As a result, several plant owners make radical changes in their operations using cutting-edge technologydespite knowing it realistically. Over-investing in technologies unfamiliar to present industrial personnel might be deemed a technology blunder. Investing in new technology that doesn't generate value or is too hard for current staff to use might be a mistake. It's usually best to start small when implementing newtechnology in manufacturing. Using collaborative robots in production is one way to get started with automation. They are inexpensive, need little software and hardware, and may help employees with mundane, repeated chores that gobble up bandwidth. It is a low-cost entry point into automation that saves labor expenses and opens the door for further automation investments when opportunities are available. Reuse Other Factory Equipment and Supplies Check with other factories to see if they have any unused equipment or supplies that may be "redeployed" to your manufacturing plant. Redeployment would save you time and money by eliminating the need to look for and install new equipment while lowering your overhead costs. Outsourcing a fully equipped factory, equipment, or even staff can also assist in lowering overhead costssince you will only pay for what you utilize. As such, it is a viable method to incorporate into your production process. Employ an In-house Maintenance Expert An in-house repair technician can service your equipment for routine inspections, preventive maintenance, and minor repairs. This hiring decision might save money on unforeseen repair expenses or work fees for an outside repair provider. Having someone on-site who can do emergency repairs may save you money if your equipment breaks after business hours. Final Words Manufacturing overhead costis an essential aspect of every manufacturing company's budget to consider. Smart manufacturingis intended to be productive, efficient, and cost-effective while effectively managing production expenditures. Calculating the manufacturing overheadcan provide you with a better understanding of your company's costs and how to minimize them. Depending on the conditions or geographical needs, each manufacturing plant's overhead expensesmay vary. As a result, identify your production overhead costsand concentrate on reducing and improving them. FAQ What are manufacturing overheads? Manufacturing overhead cost is a sum of all indirect expenses incurred during production. Manufacturing overhead expenses usually include depreciation of equipment, employee salaries, and power utilized to run the equipment. What is a decent overhead percentage? When a business is functioning successfully, an overhead ratio of less than 35 % is considered favorable. How can I calculate the cost of manufacturing per unit? The overall manufacturing cost per unit is determined by dividing the total production expenses by the total number of units produced for a particular time.

Read More

Spotlight

Southwest Products

Southwest Products brings decades of experience manufacturing and designing custom service vehicles, industrial tanks, and power generation solutions for customers across the world. In addition to the company’s manufacturing capabilities, Southwest Products is a leading distributor of new and remanufactured gas and diesel engines.

Events