The Key Components of Industry 4.0 and Their Applications

THE KEY COMPONENTS OF INDUSTRY 4.0
Industry 4.0 technologies, ranging from simulation to big data, have advanced significantly during the past few years. It is critical to gaining access to real-time outcomes and data that will propel the sector to new heights of lean success. Growing industry expertise and technological applications are making all cutting-edge technologies commercially available.

However, the notion of Industry 4.0 is not straightforward. It comprises a wide range of technologies and is applied across a variety of circumstances. This article will explore some of the key components of Industry 4.0 and their application scenarios. All of them are critical components for industry to work smoothly, accurately, and effortlessly. Each individual component plays a unique role in the overall efficacy of Industry 4.0 technologies.

Industry 4.0 Components


Big Data and Analytics & Use Case

Big data analytics is one of the core components of Industry 4.0. With big data analytics, businesses may identify important correlations, patterns, trends, and preferences to help them make better decisions. In Industry 4.0, big data analytics is used in smart factories to forecast when maintenance and repair procedures are required. Manufacturers benefit from increased production efficiency, real-time data analysis, predictive maintenance optimization, and production management automation.

“Data is the new science. Big data holds the answers.”

– Pat Gelsinger, CEO at VMware

The IoT and current production systems create a lot of data that must be acted upon. That's why big data organizes data and develops insights that help businesses enhance their operations.

Big Data Use Cases 

Optimizing Warehouse Operations: Businesses may increase operational efficiency by identifying human mistakes, running quality checks, and displaying ideal production or assembly routes using sensors and portable devices.

Eliminating Bottlenecks: Big data helps identify variables that may slow the operation’s performance and diagnose the issue at an early stage and eliminate bottlenecks.

Predicting Demand: More accurate and relevant forecasts are made possible by visualizing activities beyond historical data through internal analysis (consumer preferences) and external analysis (trends and external events). This enables the business to predict demand, adjust and optimize its product portfolio.

Proactive Upkeep: By recognizing breakdowns in patterns, data-fed sensors indicate potential problems in the operation of machinery before they become breakdowns. The system notifies the equipment in order for it to react appropriately. These are only a few of the applications of big data analysis in manufacturing systems; there are several others, including enhanced security, load optimization, supply chain meanagemnt, and non-conformity analysis. 

Industrial Internet of Things (IIoT) & Use Case

The next component in the industry 4.0 components list is IIoT. By virtue of its unique characteristics, the Industrial Internet of Things (IIoT) is creating massive changes in industrial applications. It greatly improves the operational efficiency and workflow of factories by monitoring assets and processes in real time. The IIoT presents several opportunities for entrepreneurs to improve their industry exponentially.

“The Internet of Things is the game-changer for an overall business ecosystem transformation.”

– Joerg Grafe, Senior Market Analyst, IBM

IIOT Use Cases

Predictive Maintenance: Maintenance schedules are established for machines and assets that run continually. Unplanned maintenance and failures often cost over $88 million a year. Predictive maintenance can help control these overhead costs.

Sensor and device data allows predictive analytics systems to swiftly analyze current conditions, identify danger indications, send alerts, and initiate maintenance activities. For example, a pumping station motor in an ideal IoT facility may schedule maintenance if it detects irregularities in sensor data. This method saves money on routine and frequent maintenance.

Asset Tracking: Asset tracking is designed to find and track valuable assets. Industries can track assets to improve logistics, maintain inventory, and identify inefficiencies or theft.

Real-time asset tracking is vital in manufacturing. It may be used in warehouse and inventory management to keep track of the goods. This helps in finding the lost or misplaced goods in the warehouse. Industries with scattered assets may use IoT to track, monitor, and control them.

Workplace analytics: More IIoT devices mean more workflow data for organizations. Data scientists can use analytics engines to find inefficiencies and offer improved operations. Location data analysis might also reveal warehouse inefficiencies.

Remote quality monitoring:  Sensors give faster and more cost-effective information about products or processes, leading to faster and more effective actions. Industry 4.0-enabled quality monitoring systems can also be obtained from the IIoT.

Manufacturing factories can utilize IoT devices to remotely check material or product quality. It increases efficiency by allowing staff to verify many processes quickly. Similarly, real-time alarms make it easier for people to respond quickly, which lowers the risk of a failed product if left unchecked.

Because remote quality monitoring is a novel concept, there aren't any ready-made solutions or services. Developing customized IoT technology to measure certain metrics can be costly and difficult.

Cyber security & Use Case

Industrial manufacturing has one of the highest data breach costs of any sector. The Ponemon Institute's 2019 Cost of a Data Breach Report estimates the average industrial breach at $5.2 million. In May 2017, the WannaCry ransomware assault crippled several manufacturing companies, forcing some to shut down plants for days. Overall losses were in the billions.

“Cyber-Security is much more than a matter of IT.”

― Stephane Nappo

Cyber security is vital for a safer digital zone on your factory floor or in your manufacturing business. It is one of the crucial 4.0 industry components. It's essential to be mindful of the weaknesses while modernizing manufacturing. The largest risk in an open factory environment with widely distributed partners and operations is an incident that disrupts operations. No manufacturing company, or any organization, for that matter, should pursue digital transformation without including cyber security in every step and decision.  

Cyber Security Use Cases
  • Analyzing network traffic to detect patterns indicative of a possible attack
  • Detect harmful activities or insider risks
  • Response to incidents and forensics
  • Manage the risk associated with third- and fourth-party vendors
  • Identify data intrusions and compromised accounts
  • Risk management, governance, and compliance
  • Threat hunting is a technique for identifying signs of attack

Additive Manufacturing & Use Case

Additive manufacturing is a set of manufacturing processes that create a final product by layering material. Additive manufacturing reduces production and supply chain costs by enabling the rapid creation of large quantities of parts. It eliminates stock and the requirement for molds. Initially, 3D printing was utilized for prototyping and is still the rule. However, 3D printing technology has advanced; it is now more inventive than ever before.

“3D printing is going to be way bigger than what the 3D printing companies are saying.”

– Credit Suisse

Additive Manufacturing Use Cases

Parts for New Products: Porsche is 3D printing aluminum pistons for the Porsche 911 G2 RS engine. The improved product was made feasible using generative design software, aluminum powder, and 3D printer improvements. General Atomics Aeronautical Systems has teamed up with GE Additive to print a NACA inlet. The component is made via laser powder bed fusion.

Parts for the Aftermarket: Aftermarket components are defined as non-OEM (original equipment manufacturer) replacement parts. Thyssenkrupp and Wilhelmsen Marine Products have teamed up to offer 3D printed replacement components. With aged ships, the maritime sector frequently needs hard-to-find, costly, and time-consuming spare components. 3D printing spare parts near to the source reduces lead times and shipping costs.

Jigs, Fixtures, Molds and Tools: Jigs, fixtures, molds, and tools are essential in manufacturing. When one of these fails, a plant's downtime is prolonged. Jabil, a manufacturing services firm, has adopted 3D printing. They no longer have to wait weeks for tools or components. They can now produce tooling, fixtures, and manufacturing aids in-house in days, speeding up new product launches and increasing customer satisfaction.

Simulation and Virtualization & Use Case

Simulation in manufacturing systems is the process of using software to create computer models of production systems for the purpose of analyzing them and obtaining valuable information. According to syndicated research, it is the second-most popular management discipline among industrial managers.

“Simulation is the situation created by any system of signs when it becomes sophisticated enough, autonomous enough, to abolish its own referent and to replace it with itself.”

- Jean Baudrillard

Simulator software lets businesses try out new technologies and principles in a risk-free, virtual setting so they can make sure they're making the right investments.

Simulation Use Cases

Interoperability: The simulation showed how downstream work stations may use extra location data to more efficiently choose and organize work batches to satisfy client demand.

Information Transparency: Using sensor data, we may construct a virtual replica of the physical world, such as a manufacturing plant or contact center. This technology allows an operator to visually evaluate and certify products.

Technical Assistance: Simulating the use of Automated Guided Vehicles (AGVs) to accelerate traditional production and manufacturing processes. Additionally to substitute physically hard jobs such as stock moving is becoming increasingly popular.

Due to simulation's ability to capture the process time variation, it is an effective tool for validating critical design parameters. For example, the number of AGVs to purchase, the overall benefits to throughput, maintenance planning, and track layout.

Decentralized Decisions: In a high-mix, high-volume production plant, a simulation is performed to examine the feasibility of increasing a palletizer's storage capacity in order to 'rack-up' a series of basic tasks for overnight processing while reserving more complex processes for staff hours.

The simulation lets you try out a large number of test scenarios, including worst-case scenarios in which the machine becomes stuck near the start of its overnight operation.

Final Word

Industry 4.0 is a solution bundle for manufacturers to improve their manufacturing, inventory, and supply chain management. The key components mentioned above are only a few from an extensive list. There are more industry 4.0 technologies to include in the list, including digital twins, cloud, virtualization, robots, augmented reality, artificial intelligence, and more. Many of these technologies are now accessible to make future forward smart factories a reality today. Know about the uses of each component and learn how to integrate it into your digital manufacturing.

FAQ


What is industry 4.0 also called?

Industry 4.0 is also known as IIoT or smart manufacturing. It combines physical manufacturing and operations with smart digital technologies such as machine learning, and big data to create a more holistic and linked environment for manufacturing and supply chain businesses.

Why is Industry 4.0 needed?

Industry 4.0 technologies help you control and optimize your production and supply chain operations. It provides real-time data and insights to help you make better business decisions, eventually increasing the productivity and profitability of your company.

What are the four core components of industry 4.0?

In an attempt to define Industry 4.0 concept, German researchers developed a list of industry-defining components. They are: cyber-physical systems, IoT, Internet of Things, and smart factories.

Spotlight

Christie Cookie

A Nashville original for 35 years and counting, Christie Cookie Co. hand measures and carefully crafts its products using only the finest ingredients. True to our southern roots of hospitality and artisan craftsmanship, we stand together in our commitment to produce America’s very best cookie.

OTHER ARTICLES
Industrial 4.0

Best Practices for Successful Digital Transformation in Industry 4.0

Article | September 21, 2023

Navigating the path to success by unveiling the best practices for thriving in Industry 4.0 through successful digital transformation. Embrace the data-driven decision-making and customer-centricity. The pursuit of successful digital transformation has evolved from a business strategy to a business necessity. It is a vital imperative for organizations striving to survive and thrive in an ever-competitive market. Within this paradigm shift, a journey unfolds that transcends the commonplace and ventures into the realms of strategic innovation. This best practices article is not just a standard guide but a roadmap to excellence. Explore the best practices that propel businesses into the forefront of Industry 4.0. Beyond the surface of technology adoption lies a deeper narrative, one of cultural transformation, stakeholder collaboration, and visionary leadership. Delve into the intricacies of data-driven decision-making, the agility that fuels progress, the relentless pursuit of knowledge, and the unwavering commitment to the customer experience. Each of these elements forms a crucial thread in the tapestry of successful digital transformation. Through compelling case studies and real-world examples, draw inspiration from industry leaders who have not merely embraced change but have harnessed it to redefine their future. 1. Make confident decisions with Digital Twin Combining the physical and digital realms enables seamless integration of the entire value chain, from design to production, while optimizing with continuous data flow. A digital enterprise can harness the limitless power of data by obtaining valuable insights to make quick and confident decisions and to produce best-in-class products through efficient production. The Digital Twin approach integrates the entire product lifecycle with the factory and plant lifecycles and performance data. The end result is a continuous, open cycle of product and production optimization. The digital twin is a comprehensive digital representation of a product or process throughout its entire lifecycle. By creating a digital twin, companies can achieve significant value, such as faster time-to-market for new products, improved operational efficiency, reduced defects, and exploring new business models to drive revenue growth. With the digital twin, companies solve physical issues more efficiently by detecting them early on and accurately predicting outcomes. It empowers them to design and build superior products and ultimately enhance customer satisfaction by better serving their needs. By adopting smart architecture design, companies can continuously realize iterative value and benefits at an accelerated pace. Manufacturing, automotive, aviation, and other industries have adopted digital twins to boost productivity and efficiency. By 2025, the manufacturing industry is predicted to reach a market size worth over six billion U.S. dollars. 2. Vertically Network Various Units in Enterprise Vertical integration in a Digital Enterprise involves the convergence of IT and OT (Information Technology and Operational Technology) to enable seamless data flow from the shop floor to the top floor. The vast amount of data generated by field devices and control units on the shop floor is vital in the context of Industry 4.0, where intelligent data utilization and communication are paramount. Vertical integration generates a comprehensive solution by integrating IT systems at various hierarchical manufacturing and production levels. These hierarchical levels include the field level (interface with the production process via sensors), the control level (machine and system regulation), the production process level (to be monitored and controlled), the operations level (production planning and quality management), and the enterprise planning level. Vertical integration allows for improved communication and collaboration across different departments within the organization. This leads to better coordination, streamlined operations, and increased efficiency across the entire manufacturing ecosystem. A study by the Boston Consulting Group found that companies with a high level of vertical integration were 16% more productive than those with a low level of vertical integration. 3. Horizontally Integrate the Processes in Lifecycle The concept of horizontal integration in a Digital Enterprise ensures smooth data flow throughout the entire value chain. This integrated approach enables the digitalization of the complete value chain, spanning from design and production to service and recycling. By establishing seamless horizontal integration, it eliminates information silos and creates connections that encompass all aspects, from product innovation and manufacturing to product usage and beyond. Horizontally integrated companies focus on their core strengths and partner to support the value chain. Horizontal integration helps information flow between plant-level Manufacturing Execution Systems (MESs) when a company's manufacturing sites are spread out. This allows production sites to quickly share manufacturing data, such as unexpected delays, breakdowns, and inventory levels. Automated cooperation is crucial to supply chain integration in both the upstream (production processes and downstream (the process of bringing the finished products to market) supply and logistics chains. The integration lets a corporation automatically switch production duties between locations. A study byMcKinseyfound that companies that engaged in horizontal integration in the digital age saw their market share increase by an average of 10%. 4. Upgrade Digitalization using Automation Automation catalyzes growth by streamlining operations, breaking down silos, and promoting cross-functional collaboration. With reduced errors and increased efficiency, businesses can scale their operations with fewer resources, fostering a climate of innovation. This increased productivity allows employees to focus on more creative and challenging tasks, leading to higher motivation and engagement. Furthermore, automation provides a better customer experience, essential in today's digital-savvy market. By automating processes, businesses ensure quick access to customer information, leading to increased satisfaction. Lowering costs and expenditures is another significance enabling businesses to eliminate waste, save time, and conserve resources by automating data entry, approval workflows, and financial procedures. Additionally, automation enables efficient management of decentralized global teams from a central hub, further contributing to cost savings. Automation aids in enhancing security measures and simplifying compliance procedures. Businesses proactively identify vulnerabilities and ensure compliance with ever-changing regulations by automating data-intensive tasks. 97% of IT managers feel process automation is necessary for digital transformation. 5. Implement Additive Manufacturing The adoption of Additive Manufacturing (AM)technologies has prompted the evolution of innovative business models that emphasize environmental perspectives. AM has emerged as a transformative solution within the smart manufacturing industry, offering numerous advantages, such as improved labor, energy, and material optimization, enabling companies to respond to changing market demands effectively. AM is particularly time-saving and cost-effective for small-batch complex geometries products, allowing for non-traditional mass customization and shortening the product development cycle. It encourages changes in sustainable business models, including integrating recycled materials, increasing component attributes, and enhancing product lifecycle. AM’s sustainable benefits have garnered significant attention, focusing on reducing waste, optimizing material consumption, and shortening supply chains. Using layer-by-layer production, AM is considered less wasteful than traditional subtractive methods. It also facilitates the creation of products with extended lifecycles through repair, refurbishment, and remanufacturing, promoting sustainability and environmental responsibility. Study data estimates that the cost savings that can be achieved with Industry 4.0 transformations is 50%. 6. Choose the Appropriate Technology The success of digital transformation endeavors hinges on the careful selection of technologies to invest in. Avoid investing in the latest technology just for the sake of digitization, and refrain from rushing into numerous significant changes simultaneously, which may overwhelm employees. Instead, opt to gradually replace legacy systems and synchronize technology with business objectives through the implementation of new procedures. Here’s what Airbus did. Case Study: Airbus Airbus is the market leader in aeronautics and aerospace products and services worldwide. The organization needed a user-centric digital transformation solution to optimize its data analytics, technology, and machine learning tools, but this proved difficult. Later, it embraced open-source technology and consolidated its 15 tools onto a user-friendly platform. In ten months, this helped produce 290,000 visits and 2,200,000 page views. Additionally, the company's service center is now managing 30% fewer incidents. 7. Adapt Company for a Change Digital transformation does not demand extensive technical expertise from management and employees; rather, it necessitates a shift in mindset. By embracing this new mindset and leveraging technology solutions to automate processes for both customers and employees, rapid growth can be achieved within the organization as well as in the external market. To facilitate this transformation, it is essential to identify areas that require change, enhance transparency, and foster a culture of collaboration within the organization. By taking these steps, an organization can effectively prepare for the changes brought about by digital transformation. Case Study: Honeywell The Fortune 100 manufacturer operates in industries such as aerospace and building technology. To improve product quality and make it easier to apply digital strategies, it cut its operations from eight markets to six. Early in its transformation journey, it established a digital transformation group in the company that led digital innovations like data-driven product offerings, IoT-connected devices, and advanced industrial process control. Honeywell Intelligent Wearables eliminated the need for expert site visits, empowered workers to continue learning, improved their performance, and effectively shared their knowledge with peers by connecting field workers with remote advice. In 2018, Honeywell's share price grew from $95 to $174, and revenue went from $40 billion to $43 billion. 8. Integrate Digital Transformation into Business Goals Establish a strong connection between the digital transformation journey and the company's goals. Define the specific achievements to accomplish through digitization efforts. By aligning digital transformation initiatives with business objectives, a company can enhance its effectiveness in completing tasks, retaining existing employees, attracting new talent, and successfully overhauling company culture. Case Study: Cummins Cummins, a manufacturer of diesel and alternative fuel engines and generators is an example of a company that has capitalized on the increased demand for environmentally friendly products. Microsoft cloud compliance opportunities boost data security and IP protection. Microsoft has been one of the world's foremost technology companies for decades. Satya Nadella shifted the company's revenue model away from desktops and accelerated the transition to cloud computing. Cummins now uses Microsoft 365 for information management and collaboration to create a new workplace culture. Cummins' 58000 employees work cross-functionally and globally to stay ahead. Cummins relies on Microsoft 365 for strict security, data management and delivery, and compliance. Final Thoughts Successful digital transformation in Industry 4.0 requires a strategic and holistic approach beyond technology adoption. It demands a cultural shift, stakeholder collaboration, and a clear vision of the desired outcomes. To achieve successful digital transformation in Industry 4.0, organizations must adopt best practices that encompass technological, cultural, and strategic dimensions. Data-driven decision-making, agility, continuous learning, and a customer-centric approach are key elements in this transformative journey. By prioritizing these practices, businesses can navigate the complexities of digital transformation, drive innovation, and stay competitive in the dynamic landscape of Industry 4.0.

Read More

Achieving Interoperability in an Industry 4.0 Factory

Article | February 11, 2020

As a part of the Industry 4.0 movement, factory engineers are increasingly adopting some form of industrial Ethernet to interconnect the machines and other equipment implementing their production processes. Ethernet has been around in multiple forms for over 40 years. Most of it serves the IT community by interconnecting PCs and other equipment to a company LAN. Because of its flexibility, Ethernet has been adapted to many industrial uses.

Read More

The Impact of Coronavirus on Electronic Manufacturing

Article | February 11, 2020

Wuhan, the epicenter of the outbreak, is considered a crucial hub in the middle of China, a place of high importance for the production of automobiles, electronics, optics, and fiber optics. Wuhan and surrounding cities in the Hubei province are currently on a government-imposed quarantine at a scale the world has never seen before, some Chinese officials have referred to the situation as warlike.

Read More

Digitalizing Your Manufacturing Ecosystem

Article | February 10, 2020

Making digitalization work for you requires an understanding of your manufacturing ecosystem. Standards - such as ISA-95 - only guide you on a journey to more deeply comprehend the workings of your unique process for manufacturing your products. A batch manufacturing ecosystem often includes campaign management. Campaign management is not mentioned in ISA-95, which only speaks generally of order processing.

Read More

Spotlight

Christie Cookie

A Nashville original for 35 years and counting, Christie Cookie Co. hand measures and carefully crafts its products using only the finest ingredients. True to our southern roots of hospitality and artisan craftsmanship, we stand together in our commitment to produce America’s very best cookie.

Related News

Manufacturing Technology

Stratasys’ Latest Printer Offers Applications with Improved Parameters

Stratasys | November 06, 2023

Stratasys introduces the F3300 3D printer, offering high speed, uptime, and quality for targeting manufacturing industries with high demands. The F3300 empowers manufacturers to accelerate product development and address global supply chain challenges, delivering a strong return on investment. The latest printer will be unveiled during a live event hosted by the company on November 7. Stratasys, a leader in additive manufacturing and polymer 3D printing solutions will showcase its latest F3300 Fused Deposition Modeling (FDM) 3D printer at the Formnext conference, held in Germany from November 7 to 10. This printer offers exceptional value to manufacturing customers with reduced labor, higher part quality and yield, as well as maximized uptime. The solutions provided by Stratasys provide customers a competitive edge at every stage of the product value chain. These solutions include smart and networked 3D printers, polymer materials, a software ecosystem, and components on demand. The most successful companies in the world go to Stratasys to improve health care, provide agility to manufacturing and supply chains, and alter product design. Key Advancements Faster Print Speeds: Increased gantry speeds, speedier extrusion rates, and autocalibration. Higher Part Quality and Yields: Up to 25% improvement in accuracy and repeatability with autocalibration. Maximized Uptime: Machine monitoring, extruder redundancy, and an operator-friendly interface design. Cost Savings: Offers 25-45% savings compared to other Stratasys FDM solutions. Rich Garrity, Stratasys' Chief Industrial Business Unit Officer, remarked that the next-generation AM system empowers customers to scale production and reduce the need to compromise between traditional and additive manufacturing solutions. He added that the conventional capacity limitations, rising global supply chain challenges, and application complexity are incredibly stressful for manufacturing, and F3300 will empower buyers to accelerate product development, allowing faster innovation and maximized ROI. F3300 printer expands the range of production capabilities and provides performance-oriented manufacturers with the most expansive variety of best-in-class FDM printers. The F3300 is the latest addition to the FDM family, which includes the F900, F770, F450mc, and the F123 series. F3300 complements Stratasys’ F900, known for its dependability, use of high-performance materials, and large capacity. Built for manufacturing by the inventors, the F3300 will be the most sophisticated industrial 3D printer in the market. Its advanced features and design will transform how additive manufacturing is used in demanding industries like automotive, government/military, aerospace and service bureaus. The F3300 is expected to be available for shipment from 2024. Stratasys will host a live event on November 7 at 5:30 p.m. CET to uncover the F3300.

Read More

Manufacturing Technology

Rockwell Automation Invests in Momenta Fund for Sustainable Tech

Rockwell Automation | November 08, 2023

Rockwell Automation invests strategically in Momenta's Industry 5.0 Fund, focused on resilient, sustainable, and human-centric industrial operations. The Industry 5.0 Fund promotes a transition from shareholder to stakeholder value, emphasizing sustainability and empowering individuals with technology to make informed decisions. This partnership positions Rockwell Automation to gain early access to innovative technologies that have the potential to disrupt industrial markets and enhance sustainability while supporting startups at the forefront of digital transformation in energy, manufacturing, smart spaces, and supply chains. Rockwell Automation, a global leader in industrial automation and digital transformation, has made a strategic investment in Momenta's Industry 5.0 Fund. The Industry 5.0 Fund, with an initial capital of $100 million, supports startups dedicated to advancing resilient, sustainable, and human-centric industrial operations. Switzerland-based Momenta launched the fund in cooperation with the EU Commission to promote research and innovation in line with the Commission's Industry 5.0 initiative. The fund aims to transition industries to focus on stakeholder value over shareholder value, emphasizing sustainability and empowering people with information and technology for decision-making. Targeting entrepreneurs in Europe and North America who are at the early stages of development and are at the forefront of the digital revolution in energy, manufacturing, smart spaces, and supply chains, the Industry 5.0 Fund will provide them with venture capital funding and direct value creation. Rockwell Automation is an anchor investor in the fund, allowing the company early access to cutting-edge technologies that can disrupt industrial markets and enhance sustainability. The investment aligns with Rockwell's strategy for inorganic growth and provides valuable insights into next-generation technologies driving digital transformation. Cyril Perducat, Senior Vice President and Chief Technology Officer of Rockwell, expressed excitement about partnering with Momenta to support startups poised to disrupt the industry while expanding human potential. He emphasized the intrinsic benefits of adopting technology that benefits all stakeholders. Ken Forster, a founding partner at Momenta, expressed his appreciation for Rockwell Automation's investment in their Industry 5.0 fund. He acknowledged that Rockwell Automation played a defining role in industrial automation and digital transformation within North America. Under the leadership of an impressive team, they had also been extending their global influence. Ken noted that Momenta's primary focus for the past decade had been investing in companies that drive industrial impact. He further mentioned that they couldn't have found a better partner for the Industry 5.0 fund than Rockwell Automation.

Read More

Additive Manufacturing

Nexa3D Plans to Acquire Essentium for Broadened Capabilities

Nexa3D | November 07, 2023

Nexa3D, an ultrafast 3D printing leader, has taken a substantial step in staking its leader position in the industrial additive manufacturing space by signing a LOI to acquire Essentium, a manufacturer of HSE 3D printers and materials, adopted for high requirement, precision applications in aerospace, defense, and military. With this acquisition, Nexa3D will add high-speed extrusion (HSE) to its current product portfolio. The acquisition would broaden capabilities, diversify revenues, and expand addressable markets for the fast-growing 3D printing company. Avi Reichental, Co-founder, Chairman, and CEO of Nexa3D, stated that they are looking forward to welcoming the Essentium team to Nexa3D’s family. The acquisition will be a testament to their unwavering commitment to pushing the boundaries of 3D printing technology. He continued that by joining forces with Essentium, they aim to create synergies to deliver unmatched value to their customers. Together, they will drive ultrafast additive manufacturing innovation and provide even more powerful solutions for manufacturers seeking to achieve their production goals. Essentium, known for its variety of materials portfolio, true independent dual extruders (IDEX) and award-winning high-speed extrusion 3D printers, has provided solutions for complex polymer production applications 5 to 15 times quicker than other competing extrusion technologies. Essentium’s commitment to reliability and innovation has made it a go-to choice for manufacturers worldwide. Nexa3D has rapidly emerged as a leader in the 3D printing space, delivering excellent production solutions for businesses across various sectors. Best known for its ultrafast 3D printers, from desktops to the factory floor, its technology has redefined the possibilities of 3D printing production, enabling unparalleled productivity, material flexibility, and accuracy. Adopted by around 1200 customers all over the world, its printers have become the go-to solution for high-throughput production applications. This acquisition is expected to close by the end of this year or as soon as practicable afterward. Both Essentium and Nexa3D are committed to ensure a smooth transition and for maintaining uninterrupted services to existing and prospective customers. About Nexa3D Nexa3D is committed to the sustainable digitization of supply chains, driven by its relentless pursuit of advancing additive manufacturing. The company engineers ultrafast polymer 3D printers, capable of delivering remarkable productivity gains, up to 20 times greater, to professionals and businesses of varying sizes. Innovative partnerships with renowned material suppliers, combined with an open materials platform, serve as the catalyst for unlocking the full potential of additively manufactured polymers, particularly in volume production. Nexa3D leverages automated software tools, employing process interplay algorithms that optimize the production cycle.

Read More

Manufacturing Technology

Stratasys’ Latest Printer Offers Applications with Improved Parameters

Stratasys | November 06, 2023

Stratasys introduces the F3300 3D printer, offering high speed, uptime, and quality for targeting manufacturing industries with high demands. The F3300 empowers manufacturers to accelerate product development and address global supply chain challenges, delivering a strong return on investment. The latest printer will be unveiled during a live event hosted by the company on November 7. Stratasys, a leader in additive manufacturing and polymer 3D printing solutions will showcase its latest F3300 Fused Deposition Modeling (FDM) 3D printer at the Formnext conference, held in Germany from November 7 to 10. This printer offers exceptional value to manufacturing customers with reduced labor, higher part quality and yield, as well as maximized uptime. The solutions provided by Stratasys provide customers a competitive edge at every stage of the product value chain. These solutions include smart and networked 3D printers, polymer materials, a software ecosystem, and components on demand. The most successful companies in the world go to Stratasys to improve health care, provide agility to manufacturing and supply chains, and alter product design. Key Advancements Faster Print Speeds: Increased gantry speeds, speedier extrusion rates, and autocalibration. Higher Part Quality and Yields: Up to 25% improvement in accuracy and repeatability with autocalibration. Maximized Uptime: Machine monitoring, extruder redundancy, and an operator-friendly interface design. Cost Savings: Offers 25-45% savings compared to other Stratasys FDM solutions. Rich Garrity, Stratasys' Chief Industrial Business Unit Officer, remarked that the next-generation AM system empowers customers to scale production and reduce the need to compromise between traditional and additive manufacturing solutions. He added that the conventional capacity limitations, rising global supply chain challenges, and application complexity are incredibly stressful for manufacturing, and F3300 will empower buyers to accelerate product development, allowing faster innovation and maximized ROI. F3300 printer expands the range of production capabilities and provides performance-oriented manufacturers with the most expansive variety of best-in-class FDM printers. The F3300 is the latest addition to the FDM family, which includes the F900, F770, F450mc, and the F123 series. F3300 complements Stratasys’ F900, known for its dependability, use of high-performance materials, and large capacity. Built for manufacturing by the inventors, the F3300 will be the most sophisticated industrial 3D printer in the market. Its advanced features and design will transform how additive manufacturing is used in demanding industries like automotive, government/military, aerospace and service bureaus. The F3300 is expected to be available for shipment from 2024. Stratasys will host a live event on November 7 at 5:30 p.m. CET to uncover the F3300.

Read More

Manufacturing Technology

Rockwell Automation Invests in Momenta Fund for Sustainable Tech

Rockwell Automation | November 08, 2023

Rockwell Automation invests strategically in Momenta's Industry 5.0 Fund, focused on resilient, sustainable, and human-centric industrial operations. The Industry 5.0 Fund promotes a transition from shareholder to stakeholder value, emphasizing sustainability and empowering individuals with technology to make informed decisions. This partnership positions Rockwell Automation to gain early access to innovative technologies that have the potential to disrupt industrial markets and enhance sustainability while supporting startups at the forefront of digital transformation in energy, manufacturing, smart spaces, and supply chains. Rockwell Automation, a global leader in industrial automation and digital transformation, has made a strategic investment in Momenta's Industry 5.0 Fund. The Industry 5.0 Fund, with an initial capital of $100 million, supports startups dedicated to advancing resilient, sustainable, and human-centric industrial operations. Switzerland-based Momenta launched the fund in cooperation with the EU Commission to promote research and innovation in line with the Commission's Industry 5.0 initiative. The fund aims to transition industries to focus on stakeholder value over shareholder value, emphasizing sustainability and empowering people with information and technology for decision-making. Targeting entrepreneurs in Europe and North America who are at the early stages of development and are at the forefront of the digital revolution in energy, manufacturing, smart spaces, and supply chains, the Industry 5.0 Fund will provide them with venture capital funding and direct value creation. Rockwell Automation is an anchor investor in the fund, allowing the company early access to cutting-edge technologies that can disrupt industrial markets and enhance sustainability. The investment aligns with Rockwell's strategy for inorganic growth and provides valuable insights into next-generation technologies driving digital transformation. Cyril Perducat, Senior Vice President and Chief Technology Officer of Rockwell, expressed excitement about partnering with Momenta to support startups poised to disrupt the industry while expanding human potential. He emphasized the intrinsic benefits of adopting technology that benefits all stakeholders. Ken Forster, a founding partner at Momenta, expressed his appreciation for Rockwell Automation's investment in their Industry 5.0 fund. He acknowledged that Rockwell Automation played a defining role in industrial automation and digital transformation within North America. Under the leadership of an impressive team, they had also been extending their global influence. Ken noted that Momenta's primary focus for the past decade had been investing in companies that drive industrial impact. He further mentioned that they couldn't have found a better partner for the Industry 5.0 fund than Rockwell Automation.

Read More

Additive Manufacturing

Nexa3D Plans to Acquire Essentium for Broadened Capabilities

Nexa3D | November 07, 2023

Nexa3D, an ultrafast 3D printing leader, has taken a substantial step in staking its leader position in the industrial additive manufacturing space by signing a LOI to acquire Essentium, a manufacturer of HSE 3D printers and materials, adopted for high requirement, precision applications in aerospace, defense, and military. With this acquisition, Nexa3D will add high-speed extrusion (HSE) to its current product portfolio. The acquisition would broaden capabilities, diversify revenues, and expand addressable markets for the fast-growing 3D printing company. Avi Reichental, Co-founder, Chairman, and CEO of Nexa3D, stated that they are looking forward to welcoming the Essentium team to Nexa3D’s family. The acquisition will be a testament to their unwavering commitment to pushing the boundaries of 3D printing technology. He continued that by joining forces with Essentium, they aim to create synergies to deliver unmatched value to their customers. Together, they will drive ultrafast additive manufacturing innovation and provide even more powerful solutions for manufacturers seeking to achieve their production goals. Essentium, known for its variety of materials portfolio, true independent dual extruders (IDEX) and award-winning high-speed extrusion 3D printers, has provided solutions for complex polymer production applications 5 to 15 times quicker than other competing extrusion technologies. Essentium’s commitment to reliability and innovation has made it a go-to choice for manufacturers worldwide. Nexa3D has rapidly emerged as a leader in the 3D printing space, delivering excellent production solutions for businesses across various sectors. Best known for its ultrafast 3D printers, from desktops to the factory floor, its technology has redefined the possibilities of 3D printing production, enabling unparalleled productivity, material flexibility, and accuracy. Adopted by around 1200 customers all over the world, its printers have become the go-to solution for high-throughput production applications. This acquisition is expected to close by the end of this year or as soon as practicable afterward. Both Essentium and Nexa3D are committed to ensure a smooth transition and for maintaining uninterrupted services to existing and prospective customers. About Nexa3D Nexa3D is committed to the sustainable digitization of supply chains, driven by its relentless pursuit of advancing additive manufacturing. The company engineers ultrafast polymer 3D printers, capable of delivering remarkable productivity gains, up to 20 times greater, to professionals and businesses of varying sizes. Innovative partnerships with renowned material suppliers, combined with an open materials platform, serve as the catalyst for unlocking the full potential of additively manufactured polymers, particularly in volume production. Nexa3D leverages automated software tools, employing process interplay algorithms that optimize the production cycle.

Read More

Events