The Future of Additive Manufacturing: Trends and Predictions

THE FUTURE OF ADDITIVE MANUFACTURING
3D printing technology and its role in future manufacturing are grabbing the interest of industry experts. In terms of elevating future products, future additive manufacturing has a lot to offer the business. Additive manufacturing is developing and stretching its wings on a daily basis, becoming an integral part of every industry, including manufacturing, healthcare, education, and more.

In this article, we'll shed some light on the 3D printing future trends, which will assist the business in deepening its impact across industries. Furthermore, we will explore whether the additive manufacturing business is worth investing in as well as who the major players are that have already invested in the future of 3D printing.

Future Trends in the Additive Manufacturing Industry


Enhanced Machine Connectivity

Making AM solutions (including software and hardware) easier to integrate and connect to the factory floor is one of the key AM trends we predict to advance in the coming years. It has been a long time since the AM hardware market has been filled with closed, or proprietary, systems. These systems generally function with materials and software given or approved by the machine OEM and are not easily integrated with third-party alternatives.

Closed systems are important for process dependability, but they also restrict collaboration and connectivity. Companies expanding their AM operations will need to connect their machines and software to their production environments. When it comes to additive manufacturing, using siloed solutions is a surefire way to fail. Importantly, we see hardware manufacturers increasingly focusing on solutions that can be integrated with the production floor.

For example, a 3D printing market leader like Stratasys is a good illustration of the trend. In December, the business announced an extension of its previously closed machines' connection.Consumers may now integrate and control their additive production using software programs of their choosing, not just Stratasys' systems. For AM facilities, system connectivity is no longer an option. It's exciting to see the AM industry players recognize and solve this requirement.

AM and AI Continue to Converge

AM growth is incorporating AI and machine learning. AI can help with material development, machine setup, part design, and workflow automation. So, in the future, we anticipate seeing more AI and AM technology integration.

Combined with AM systems, AI will improve process control and accuracy. For example, Inkbit is currently working on an AI-powered polymer vision system. This technology can scan 3D printing layers and anticipate material behavior during printing.
Generative design, already generally recognized as a key digital advance in AM, may tremendously benefit from AI and machine learning.

It has so far been utilized to improve load routes when strength and stiffness are dominant. It can also be utilized to optimize thermal or vibration. AI and machine learning will advance generative design, allowing new concepts to be completely suited to AM.While we may be a few years away from fully developing the capacity to automatically adapt designs to process, we anticipate significant breakthroughs this year that will bring us closer.

AM Will Drive Decentralization

In order to future-proof their supply chains, many manufacturers are following new supply chain models and technology that allow them to cut prices or switch goods more easily. Increasing flexibility and agility will necessitate distributed, localized production, assisted by additive manufacturing.To reduce the number of steps required to manufacture complex metal or polymer structures, shorten lead times, and enable digital inventory management, digital inventory management can be automated. These advantages make it ideal for the distributed manufacturing model. We believe that in the near future, more businesses will actively explore distributed manufacturing with AM.

According to a recent HP survey, 59% of organizations are now considering hybrid models, while 52% are looking into localized digital manufacturing.

3D Printing Future: Major Predictions

In Jabil's 2021 3D printing trends survey of over 300 decision-makers, 62% of participants claim their organization is actively using additive manufacturing for production of their product components, up from 27% in 2017. Many such manufacturers are on the lookout for the latest additive manufacturing trends and forecasts. So let's begin.

Increasing Flexibility and Customization

Customized goods are a popular consumer trend, impacting several sectors. Rather than buying a mass-produced item, customers are increasingly demanding a custom-made item that meets their specific needs.
Additive manufacturing's low-volume production capabilities simply enable personalization and customization.

3D printing allows for more responsive design options, particularly for additive manufacturing. Manufacturers can afford to make smaller batches, allowing designers and engineers to alter product ideas and develop them cost-effectively when inspiration strikes, the public mood is understood, or customer feedback drops in.

Materials Drive the Future of Digital

As the additive manufacturing ecosystem grows, the importance of materials cannot be overstated. Besides high equipment costs, materials and limited additive manufacturing ecosystems have hindered the 3D printing industry's growth. The market is flooded with 3D printing materials, but few are advanced enough to fulfill industry standards.Due to volume constraints in most sectors, suppliers and manufacturers aren't motivated to develop innovative materials for new uses. However, the future of 3D printing is in engineered and application-specific materials.

Various sectors have unique difficulties that demand unique solutions. New designed materials will revolutionize new uses, including highly regulated sectors. Industries will reward those who can promptly introduce 3D printing materials adapted to specific industrial and engineering needs. This will allow more 3D printing applications to be supplied and the whole digital manufacturing flywheel to start spinning.

3D Printing and a Sustainable Future

Finally, additive manufacturing promotes sustainability and conservation. Besides decreasing trash, 3D printing saves energy. The Metal Powder Industries Federation studied the difference between making truck gear using subtractive manufacturing (17 steps) and additive manufacturing (6 steps).

3D printing uses less than half the energy it takes to produce the same product. 3D printing also reduces the need for moving products and materials, reducing the amount of carbon emitted into the environment. So we can see that digital and additive solutions already contribute to a more sustainable future.

Is Investment in the Future of Additive Manufacturing Worth It?

In recent years, there has been an explosion of investment in industrial 3D printing. Hundreds of millions of dollars have flowed into the industry in recent years, assisting new businesses. Desktop Metal ($160 million), Markforged ($82 million), and 3D Hubs ($18 million) have all received significant funding in the past. According to a recent report and data analysis, the global additive manufacturing market will hit USD 26.68 billion by 2027. A rising level of government support for additive manufacturing across regions is driving market demand.

For example, America Makes, the foremost national initiative in the US since 2012 dedicated to additive manufacturing (3D printing future technology), received USD 90 million in support from the government, commercial, and non-profit sectors. Given the industry's expenditures and the expanding need for 3D printing, investing in the additive manufacturing industry or 3D printing is certainly encouraged.

Final Words

Additive manufacturing is being used in practically every industry, and companies are researching how technology might be used in their specific fields. The numerous advantages and sustainability that 3D printing provides are the major benefits that manufacturers and other industry professionals notice with 3D printing.Future manufacturing will be significantly more accurate and simple to run thanks to 3D printing technologies. Considering the trends and projections listed above, you may have a better understanding of 3D printing's future and make an informed investment decision.

FAQ


What is the future of 3D printing?

3D printing, or additive manufacturing, has the potential to empower everything from food to coral reefs. 3D printers may soon be seen in homes, companies, disaster zones, and perhaps even outer space.

Why is 3D printing important to society?

3D printing results in waste reduction and so eliminates the need for periodic waste reduction, reuse, and recycling. So it helps society with no carbon footprint.

Why is it known as additive manufacturing?

The term "additive manufacturing" refers to the fact that the building process adds layers rather than removes raw materials.

Spotlight

Atronix, Incorporated

Since 1980, Atronix, Incorporated has been a source of contract assembly services to OEMs. Specializing in cable, wire harness and electromechanical assembly, engineering and manufacturing services Atronix delivers turn-key manufacturing services from our ISO 9001:2008 registered facilities in Billerica, Massachusetts, Tucson, Arizona and Nogales, Sonora, Mexico, and partner production facilities in Taiwan and the Philippines.

OTHER ARTICLES
Manufacturing Technology

Top Electronics Manufacturing Trends to Watch in 2022

Article | October 13, 2021

The electronics manufacturing business is adopting new technologies to create smart electronics manufacturing products for its consumer base. Next-generation technologies are shaping the future of the manufacturing industry by enabling it to create technologically advanced and user-friendly products. Matt Mong, one of the manufacturing industry's leading professionals, stated in an interview with Media7, “Be Different. Don’t position your product in an existing category. Instead, create your category and make the competition irrelevant and obsolete.” – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca. The year 2022 will be a year of advancement and development for the electronics manufacturing industry. So, manufacturers are eager to embrace new technologies and produce more innovative, more user-friendly goods that become part of consumers' daily lives and meet their needs. To make the manufacturing process manageable and deliver advanced products, we will look at the top five trends flourishing in the electronics manufacturing industry. Top Five Electronics Manufacturing Industry Trends Future manufacturing technologies are transforming the electronics manufacturing industry's processes and products. Let's look at the top electronics manufacturing industry trends for 2022, which will propel the sector to new heights of technological advancement. Utilizing the Benefits of the Internet of Things The Internet of Things is being used in both the manufacturing process and the products themselves. It enables electronic manufacturing products and processes to become more intelligent and performance-driven to fulfill business and customer needs. In electronics manufacturing, the Internet of Things (IoT) enables businesses to solve common production challenges such as product quality issues, changing demands, and a complex global supply chain. As a result, it increases productivity and efficiency while reducing human effort. Industrial units may gather and analyze real-time data and processes using IoT-based sensor systems. Additionally, it assists organizations in managing data and transforms traditional manufacturing into an intelligent manufacturing unit. Using an ERP System to Maintain the Company's Competitive Edge ERP (Enterprise Resource Planning) is a centralized management system for all operational and business activities. The software automates all manufacturing processes and enables the electronics manufacturing sector to achieve higher precision throughout the manufacturing process and product delivery. ERP has the potential to boost productivity, improve efficiency, decrease expenses, and increase profitability. ERP enables electronics manufacturers to forecast, plan, modify, and respond to changing market demands. By using an ERP system in your manufacturing unit, you may expand your business and increase revenue. Making Use of Big Data The electronics manufacturing industry benefits from the use of big data to make critical business decisions. It aids in the integration of previously isolated systems to provide a comprehensive view of industrial processes. It also automates data gathering and processing, allowing for more excellent knowledge of each system individually and collectively. Big data also assists manufacturers in discovering new information and identifying trends, allowing them to optimize operations, improve supply chain efficiency, and find variables that impact manufacturing quality, volume, or consistency. In addition, big data assists the electronics manufacturing industry in keeping up with the rapidly changing digital world. Using AR and VR to Create Consumer-friendly Goods AR and VR are future manufacturing technologies that are changing electronics manufacturing products and driving growth. Robotics is a crucial usage of virtual reality in electronics production. Manufacturers may use powerful virtual reality software to design goods. This implementation of virtual reality software reduces production errors and saves time and money. AR in electronics manufacturing allows product developers to generate interactive 3D views of new products before production. AR and VR are part of Industry 4.0, the digital revolution of conventional electronics production units. Adoption of 3D Printing on a Wide Scale One of the essential advantages of today's electronics 3D printing is that companies can quickly prototype PCBs and other electrical devices in-house. In addition, 3D printing has simplified the electronics manufacturing process, and it is currently being utilized to manufacture multilayer printed circuit boards. It uses material jetting technology to spray conductive and insulating inks onto the printing surface. Let's look at an example of an analogy that worked for Jinzhenyuan - The Electronic Technology Co. Ltd., managed by Mr. Huang Runyuan, Jinzhenyuan's General Manager, and based on the concept of Industry 4.0. (Reference: Forbes) Jinzhenyuan - The Electronic Technology Co. Ltd. Takes a Significant Step Forward with Industry 4.0 Jinzhenyuan - The Electronic Technology Co. Ltd., formed in 2012, sells its products globally. In addition, it manufactures cellphones, computers, cars, and a variety of other consumer electronics. Due to changing market needs, the firm planned to upgrade its production facility to industry 4.0 by the end of 2017 to participate in smart manufacturing. The company increased production efficiency, shortened production cycles, and cut costs due to the digital revolution. Today, Jinzhenyuan is regarded as a model of digital transformation in the community in which it works. Let’s observe the statistics for Jinzhenyuan following the deployment of Industry 4.0. 32% improvement in total production efficiency 33% cost reduction 41% decrease in R&D to production cycles 51% reduction in substandard parts rate – from 3,000 to 1,500 per million Final Words The electronics manufacturing sector is on the verge of a digital revolution that will improve the production process efficiency and cost-effectiveness. Many of the world's biggest firms, like Apple, Microsoft, Hitachi, and Saline lectronics, are developing future agile factories to keep up with the world's digital transformation. Future manufacturing technology will help your manufacturing company make the manufacturing process more efficient and boost the business revenue. FAQs What are the future electronics technologies? Smart grid solutions, wearable technology devices, prefabricated goods, the Internet of Things, and robots are some of the future electronics innovations that will propel the business forward. Is the supply chain benefiting from new technology trends? Yes, supply chain management benefits from smart technology as well. Trucks equipped with cutting-edge technologies can get real-time data on the weather and road conditions ahead of time. It contributes to the supply chain process's reduction of possible risks. Which manufacturers are implementing the industry 4.0 concept in their factories? Whirlpool, Siemens, Hirotec, Tesla, Bosch, and Ocado, among others, have turned their traditional factories into digitally smart ones that incorporate all of the cutting-edge technology necessary to improve and optimize the production process. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What are the future electronics technologies?", "acceptedAnswer": { "@type": "Answer", "text": "Smart grid solutions, wearable technology devices, prefabricated goods, the Internet of Things, and robots are some of the future electronics innovations that will propel the business forward." } },{ "@type": "Question", "name": "Is the supply chain benefiting from new technology trends?", "acceptedAnswer": { "@type": "Answer", "text": "Yes, supply chain management benefits from smart technology as well. Trucks equipped with cutting-edge technologies can get real-time data on the weather and road conditions ahead of time. It contributes to the supply chain process's reduction of possible risks." } },{ "@type": "Question", "name": "Which manufacturers are implementing the industry 4.0 concept in their factories?", "acceptedAnswer": { "@type": "Answer", "text": "Whirlpool, Siemens, Hirotec, Tesla, Bosch, and Ocado, among others, have turned their traditional factories into digitally smart ones that incorporate all of the cutting-edge technology necessary to improve and optimize the production process." } }] }

Read More

AI for Manufacturing: Leveraging ML to Prepare for Change and Uncertainty

Article | April 15, 2020

In the midst of the rapid lifestyle changes incurred by COVID-19, consumer behaviors have shifted considerably: grocery and variety stores are experiencing consistent spikes in consumer demand, while other brick-and-mortar retailers are experiencing dwindling sales and a spike in traffic to their ecommerce sites. Undoubtedly, this reality significantly impacts manufacturers who, by and large, are worried about what COVID-19 will mean for their organizations in the short to medium terms. In fact, PwC has reported that 80% of manufacturing leaders expect to see a negative financial impact on their business due to the pandemic.

Read More
Manufacturing Technology

Actions C-suite Executives Can Take to Get the Most Out of Cloud Computing

Article | April 26, 2022

Cloud implementation alone will not provide value for a company. Executives at the highest levels must take the initiative towards digital transformation. C-suite executives play an important role in a business's digital transformation, which is critical to its success. C-level executives must consider cloud computing plans over the long term and ensure appropriate money and resources for cloud adoption. When it comes to cloud computing's objectives and benefits, C-level executives must take the lead and be involved in the strategies to ensure that the blueprint meets the business's requirements. CEOs, for example, must collaborate with CTOs and CIOs to maximize the benefits of cloud computing and ensure a smooth transition to digital transformation. In this article, we will discuss the five essential activities that the organization's c-level executives must undertake to get the most out of cloud computing. Five Cloud Adoption Actions C-suite Executives Must Take Maintaining a Consistent Financial Flow Cloud computing's objectives and benefits can be realized only with enough funding. As a CEO, it is critical to establish a financial funnel that supports each stage of the organization's cloud migration journey. It may take time for your firm to benefit from cloud computing fully. As a result, it is critical to ensure the financial backing is steady and consistent. Develop a Cloud-based Business Strategy A business transition is only as efficient as the planning that supports it. Therefore, to maximize the value of cloud computing, it is critical to developing a business strategy and an accompanying technology operating model. A model of this type harmonizes processes for collaborative engagement between IT and business, thereby unleashing potential. CIOs Can Help CFOs Grasp the Cloud Business Case Cloud is a business priority, not an IT one. Because it is based on technology, the CIO must convince other C-suite members, including the CFO. The CIO may directly address the CFO's business priorities by demonstrating how cloud technologies improve business processes and overall enterprise performance. The CIO can also explain how using cloud-based solutions saves money by letting an external provider handle maintenance and hosting. With technical knowledge of data and infrastructure requirements, the CIO can help the CFO understand the dangers of cloud computing and how to solve CFO concerns like data governance and compliance. The CIO and CFO can collaborate along with CEO to derive better results from the benefits of cloud computing. Collaborate on a Deployment Plan Cloud technologies can be disruptive, whether they solve a problem or add new capabilities. Co-developing a deployment strategy that minimizes downtime, quickly trains employees on the latest technology, and establishes clear success indicators helps minimize interruption. The discussion should begin with an evaluation of the company's requirements, followed by comparing the various cloud technologies. The CIO can assess the company's current technological environment and identify new technologies that can cover the gaps. Understand the Financial Consequences of Cloud Computing The adoption of cloud technology will significantly alter expenses and cost structures. It will take the CIO's expertise to predict these changes. Cloud computing offers more than just long-term cost benefits. Also, CFOs must be aware of the initial costs and their possible influence on corporate efficiency and revenue. The CIO will understand a cloud vendor's service level agreements (SLAs), prices, and requirements to migrate legacy systems and train personnel on the new technology. Because the CIO will be actively monitoring the company's move to the cloud, they may advise the CFO on predicted cost and cash flow changes. This is crucial for the CFO, who must give Wall Street quarterly capital and operating expense predictions. Final Word In summary, the benefits of cloud computing can be reaped by applying high-level strategies. A flawless collaboration between the CEO, CIO, and CTO can transform a business's digital transformation journey into a successful venture. Right communication is critical during the cloud migration process. Employees should get this communication from C-suite executives to foster trust and assure compliance with governance requirements. FAQ How does cloud-computing help in the manufacturing industry? Cloud computing enables manufacturers to run their operations more intelligently, which is enabled through increased use of data analytics. Indeed, for the majority of manufacturers, the cloud is rapidly becoming the primary location for data storage, analytics, and intelligence. Why do manufacturers adopt the cloud? Cloud adoption is a strategic decision made by businesses to save costs, mitigate risk, and increase the scalability of their database capabilities. Cloud adoption varies from organization to organization, depending on the degree of acceptance. What are the 7 R’s of cloud migration planning? Refactor/re-architect, re-platform, repurchase, re-host, relocate, retain, and retire are the seven R’s in cloud migration planning.

Read More
Manufacturing Technology

Luxury retail must adapt to smarter packaging to stay connected with consumers

Article | January 25, 2021

These days, smart can be added to the front of just about everything. And unsurprisingly, packaging is no different.? Being influenced by digital transformation, smart packaging is a way for brands to connect their online and offline offerings. And as?ecommerce sales continue to rise, Robert Lockyer, CEO and founder of Delta Global, a packaging solutions provider for luxury retailers such as Coach and Tom Ford,?believes the smart trend in packaging will too. In this piece, Robert shares his predictions on how?the?new era of smart packaging and?consequently, products,?will?connect,?improve?and transform industries?and?shape new?consumer expectations. Smart packaging refers to a container or outer shell of a product that has extended functions. Now, the concept is nothing new as these functions are?often the reason?specific?materials are chosen for use in?the?packaging?of?certain products. For instance, in the food market,?it’s?common to find fresh produce wrapped in film with ethylene absorbers in order to lengthen shelf life. Or, for bottles to be fitted with oxygen absorbing caps to keep drinks fresher for longer. But typically, in other FMCG markets, packaging has largely remained disconnected from?the product it is containing. Packaging is merely seen as a means for transportation or a protective outer layer. However, we are?seeing?a shift?in perception. Increasingly, brands are investing in the smart functions of their packaging?in order to?add value to their products. And consumers are beginning to expect such things from brands as a result. Consumer benefits of smart packaging As the trend prevails, there are?a number of?reasons?why?brands?should consider?introducing smart packaging to their product offering. The most significant of these being the ability to improve the overall customer experience of shopping from your brand and encouraging greater customer engagement. Although in?traditional?retail?customers are presented with various?physical touchpoints before making a purchasing decision, ecommerce is different. Unless a customer has visited a store first, which is unlikely at present due to COVID-19 restrictions, the package is often the first physical point of contact a customer has with a brand. Therefore, from the moment the package is delivered, before it is even opened, it needs to make an impression on your customer. An impression that reflects your brand and the intended customer experience.?This way, consumers will already have positive perceptions of your business, encouraging a better reception of your products, greater overall?engagement?and a higher likelihood of a repeat purchase in order to go through the whole experience again. And smart packaging is a way for brands to do exactly that. Packages can offer customers additional benefits and an improved customer experience by integrating within them various technologies and features. Face value features may include?illuminations, sounds, and aromas, enticing customers by appealing to their sensory needs. But other smart technology integration can be much less obvious, yet equally as advantageous. For instance, through use of connectivity and augmentation features, whether that be scannable QR codes,?sensors?or microchips,?this?can be used to improve communication with customers and the functionality and use of the product. By scanning a QR?placed on the outside of a box or bag with a smartphone?for example, customers can be provided with more information on the product inside, including details of ingredients,?origins?and production.?QR’s can?also provide?other marketing content such as competitions, product recommendations?through digital discovery?channels?and the?offering of?virtual brand experiences. Or, if the package itself is not “smart” in function, perhaps brands can look at using customer data and insights to inform designs and even tailor the outer materials to the needs of individual customers or groups, making them smart in design instead. Either way, smart packaging is becoming a way for brands to differentiate themselves from competitors?by improving customer interactions and supplementing their product offering with additional features and benefits and overall, creating a more favourable customer experience. Commercial value of smart packaging However,?smart packaging?isn’t?just about giving your customers more. Rather, there are many benefits for the business,?too. Ultimately,?there are advantages for?connectivity and transparency in the supply chain?as well as on the customer facing front. And of course, this is exactly what is offered with smart packaging. Through the inclusion of chips and systems, such as radio frequency identification (RFID)?which identify packages wirelessly, tedious processes involved with scanning at various logistic points can be removed, making the entire process from order to delivery much more efficient. Naturally, this would reduce?administrative tasks as well as costs for the business due to a much more streamlined chain. For more sensitive items, particularly in food or even in the health and beauty industry, temperature can also be both managed and monitored through smart packaging. Readings can then easily be displayed on packages, giving both the brand and customer assurance that the items inside have not been breached and remain?compliant and safe to use. Consequently, smart packaging is on track to transform industries by offering both brands and consumers new ways to deliver and use products.?Although barriers do exist at present, namely the costs related to manufacturing, it will be interesting to see how more and more brands begin to innovate and integrate smart technologies to more than just their products.

Read More

Spotlight

Atronix, Incorporated

Since 1980, Atronix, Incorporated has been a source of contract assembly services to OEMs. Specializing in cable, wire harness and electromechanical assembly, engineering and manufacturing services Atronix delivers turn-key manufacturing services from our ISO 9001:2008 registered facilities in Billerica, Massachusetts, Tucson, Arizona and Nogales, Sonora, Mexico, and partner production facilities in Taiwan and the Philippines.

Related News

Manufacturing Technology

MaxLinear Launches Product Design Kit for Active Electrical Cables Using Keystone PAM4 DSP

MaxLinear | February 02, 2024

MaxLinear, Inc. a leading provider of high-speed interconnect ICs enabling data center, metro, and wireless transport networks, announced the availability of a comprehensive product design kit (PDK) to optimize performance and accelerate the time to market for high-speed Active Electrical Cables (AEC) using MaxLinear’s 5nm PAM4 DSP, Keystone. The PDK is a cost-cutting and time-saving tool for cable manufacturers who want to quickly integrate Keystone into their active electrical cables. MaxLinear’s Keystone PAM4 DSP offers a significant power advantage in AEC applications, which is increasingly becoming a critical factor for hyperscale data centers. The use of 5nm CMOS technology enables designers and manufacturers to build high-speed cables that meet the need for low power, highly integrated, high performance interconnect solutions that will drive the next generation of hyperscale cloud networks. Manufacturers taking advantage of MaxLinear’s PDK to optimize cable designs using Keystone PAM4 DSP will gain a distinct advantage over competitor solutions when trying to maximize reach and minimize power consumption. The PDK makes Keystone easy to integrate with strong applications support, multiple tools to optimize and monitor performance, and reference designs (SW and HW) to accelerate integration. Sophisticated software allows for quick design optimization for the lowest possible power consumption and maximizing cable reach. Cable designers can constantly monitor performance, route signals from any port to any port, and take advantage of hitless firmware upgrades. “MaxLinear is focused on providing not only industry-leading interconnect technologies but also a comprehensive suite of tools to support our manufacturing and design partners,” said Drew Guckenberger, Vice President of High Speed Interconnect at MaxLinear. “Our development kit for our Keystone products provides them with a path to take products to market more quickly and more cost-effectively.” Active electrical cables (AECs) are revolutionizing data center connections. Unlike passive cables, they actively boost signals, allowing for longer distances (up to 7 meters for 400G), higher bandwidth, and thinner, lighter cables. This makes them ideal for high-speed applications like top-of-rack connections (connecting switches to servers within the same rack); direct digital control (enabling flexible interconnectivity within racks and across rows); and breakout solutions (splitting high-speed connections into multiple lower-speed channels). The high-speed interconnect market – which includes active optical cables, active electrical cables, direct attach copper cables, and others – is expected to grow to $17.1B by 2028, up from $10.7B in 2021 according to a market forecast report from The Insight Partners. The Keystone Family The Keystone 5nm DSP family caters to 400G and 800G applications, featuring a groundbreaking 106.25Gbps host side electrical I/O, aligning with the line side interface rate. Available variants support single-mode optics (EML and SiPh), multimode optics and Active Electrical Cables (AECs), offering comprehensive solutions with companion TIAs. Host side interfaces cover ethernet rates of 25G, 50G, and 100G per lane over C2M, MR, and LR host channels. The line side interfaces, tailored for 100G/λ DR, FR, and LR applications, also support these rates. These devices boast extensive DSP functionality, encompassing line-side transmitter DPD, TX FIR, receiver FFE, and DFE. With exceptional performance and signal integrity, these DSPs occupy a compact footprint (12mm x 13mm), ideal for next-gen module form-factors like QSFP-DD800 and OSFP800. Additionally, they are available as Known Good Die (KGD) for denser applications, such as OSFP-XD. About MaxLinear, Inc. MaxLinear, Inc. is a leading provider of radio frequency (RF), analog, digital, and mixed-signal integrated circuits for access and connectivity, wired and wireless infrastructure, and industrial and multimarket applications. MaxLinear is headquartered in Carlsbad, California. MaxLinear, the MaxLinear logo, any other MaxLinear trademarks are all property of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved.

Read More

Smart Factory

PsiQuantum, Mitsubishi UFJ Financial Group and Mitsubishi Chemical Announce Partnership to Design Energy-Efficient Materials on PsiQuantum’s

PsiQuantum | January 30, 2024

PsiQuantum and Mitsubishi UFJ Financial Group announced that they are beginning work with Mitsubishi Chemical Group on a joint project to simulate excited states of photochromic molecules which have widespread industrial and residential potential applications such as the development of smart windows, energy-efficient data storage, solar energy storage and solar cells, and other photoswitching use cases. Qlimate, a PsiQuantum-led initiative that includes MUFG as a partner, focuses on using fault-tolerant quantum computing to crack the most challenging computational problems and accelerate the development of scalable breakthroughs across climate technologies, including more energy-efficient materials. Mitsubishi UFJ Financial Group (MUFG) is committed to supporting the world’s transition to a sustainable future, and to encourage industry access to the most promising breakthrough technologies. By pioneering PsiQuantum’s Qlimate solutions with industry leader Mitsubishi Chemical, MUFG is at the forefront of quantum computing for sustainability. This joint project will determine whether high-accuracy estimates of excited state properties are feasible on early-generation fault-tolerant quantum computers, specifically focusing on diarylethenes used for energy-efficient photoswitching applications. The project will allow Mitsubishi Chemical to gain early insights into how and when fault-tolerant quantum computing can be deployed in support of critical, scalable, sustainable materials. Because predicting the optical properties of materials requires complex analysis of excited states, standard algorithmic techniques for simulating these molecules (such as the Density Functional Theory, or DFT) often produce qualitatively incorrect results. The project will bring together Mitsubishi Chemical’s deep experience of computational chemistry and PsiQuantum’s leading expertise in fault-tolerant quantum computing to push the boundaries of approaching the complex physics in these systems and pave the way to developing new, more powerful energy-efficient photonic materials. Philipp Ernst, Head of Solutions at PsiQuantum, said: “PsiQuantum has dedicated teams who identify, describe and solve complex problem sets with best-in-class quantum algorithms. These are designed specifically to run on fault-tolerant quantum computers and will tackle previously-impossible computational challenges. This partnership will leverage our team’s unique know-how and Mitsubishi Chemical’s expertise in photochromic materials. We are grateful for MUFG’s visionary support in our mission to deploy high-impact quantum computing solutions to fight climate change.” Suguru Azegami, Managing Director, Sustainable Business Division, MUFG said: “We are excited to partner with PsiQuantum and Mitsubishi Chemical on our journey to explore possibilities of quantum computing technologies to solve the imminent global challenge. PsiQuantum’s vision to develop the first utility scale quantum computer before the end of the decade has inspired us, which led our initiative to participate in the Qlimate partnership as the first and sole member from Japan. Mitsubishi Chemical is leading efforts to use the cutting-edge technology to develop next generation materials and we are honored to support the company as its long term financial partner.” Qi Gao, Senior Chief Scientist, Mitsubishi Chemical said: “We are pleased to be part of the partnership and are grateful for MUFG’s support. Mitsubishi Chemical’s over 40 years background in computational chemistry and PsiQuantum’s domain specific knowledge for quantum control is a great fit with the collaboration effort of improving calculation accuracy on quantum device. We hope the partnership will accelerate the innovation of revolutionizing computational studies in chemistry and materials science.” About PsiQuantum PsiQuantum is a private company, founded in 2015 and headquartered in Palo Alto, California. The company’s only mission is to build and deploy the world’s first useful, large-scale quantum computer. Many teams around the world today have demonstrated prototype quantum computing systems, but it is widely accepted that much larger systems are necessary in order to unlock transformational applications across drug discovery, climate technologies, finance, transportation, security & defense and beyond. PsiQuantum’s photonic approach enables rapid scaling via direct leverage of high-volume semiconductor manufacturing and cryogenic infrastructure. The company is partnered with the SLAC National Accelerator Laboratory at Stanford University and Sci-Tech Daresbury in the United Kingdom. About Mitsubishi UFJ Financial Group, Inc. (MUFG) Mitsubishi UFJ Financial Group, Inc. (MUFG) is one of the world’s leading financial groups. Headquartered in Tokyo and with over 360 years of history, MUFG has a global network with approximately 2,000 locations in more than 50 countries. The Group has about 160,000 employees and offers services including commercial banking, trust banking, securities, credit cards, consumer finance, asset management, and leasing. The Group aims to “be the world’s most trusted financial group” through close collaboration among our operating companies and flexibly respond to all of the financial needs of our customers, serving society, and fostering shared and sustainable growth for a better world. MUFG’s shares trade on the Tokyo, Nagoya, and New York stock exchanges. About the Mitsubishi Chemical Group Corporation Mitsubishi Chemical Group Corporation (TSE: 4188) is a specialty materials group with an unwavering commitment to lead with innovative solutions to achieve KAITEKI, the well-being of people and the planet. We bring deep expertise and material science leadership in core market segments such as mobility, digital, medical and food. In this way, we enable industry transformation, technology breakthroughs, and longer, more fruitful lives for us all. Together, around 70,000 employees worldwide provide advanced chemistry-based solutions to deliver the core elements of our slogan — “Science. Value. Life.”

Read More

Additive Manufacturing

Teledyne Relays Unveils Innovative Multi-Function Timer Series

Teledyne Relays, Inc. | January 29, 2024

Teledyne Relays, a leading provider of cutting-edge relay solutions, introduces its new Multi-Function Timer product series, showcasing the company's commitment to delivering advanced, reliable, and versatile solutions for the industrial automation sector. Teledyne Relays Multi-Function Timer MFT series is a state-of-the-art solution designed for a wide variety of applications that demand precise timing control. The user-friendly design features three potentiometers for easy selection of timing functions and ranges, while the LEDs provide at-a-glance feedback of timing and relay status. The MFT series also features 7 selectable timing functions for a wide variety of applications Timing ranges from 0.1 seconds up to 100 hours Compact 17.5mm housing preserves valuable panel space Supply Voltages: 24VDC & 24-240VAC OR 12-240VAC/DC 5A SPDT output relay Engineered with the needs of electrical engineers, panel builders, and automation engineers in mind, these timers find application in various industries, including but not limited to Industrial Automation Manufacturing Process Control Systems HVAC and Refrigeration Agriculture and Irrigation Power Distribution “With the new Multi-Function Timer series, Teledyne Relays continues to lead in providing reliable and versatile solutions for industrial automation, ensuring precise timing control,” said Michael Palakian, Vice President of Global Sales and Marketing at Teledyne Relays. The Multi-Function Timer series from Teledyne Relays ensures precise timing control, offering unparalleled reliability across diverse applications and is available for ordering from Teledyne Relays or an authorized distributor. About Teledyne Relays Teledyne Relays is a world leader in high-performance coaxial switches, electromechanical, and solid-state relays, offering a wide range of solutions for various applications in the aerospace and defense, telecommunications, test and measurement, and industrial markets. With over 60 years of experience, Teledyne Relay has established a reputation for quality, reliability, and customer service excellence. About Teledyne Defense Electronics Serving Defense, Space and Commercial sectors worldwide, Teledyne Defense Electronics offers a comprehensive portfolio of highly engineered solutions that meet your most demanding requirements in the harshest environments. Manufacturing both custom and off-the-shelf product offerings, our diverse product lines meet emerging needs for key applications for avionics, energetics, electronic warfare, missiles, radar, satcom, space and test and measurement.

Read More

Manufacturing Technology

MaxLinear Launches Product Design Kit for Active Electrical Cables Using Keystone PAM4 DSP

MaxLinear | February 02, 2024

MaxLinear, Inc. a leading provider of high-speed interconnect ICs enabling data center, metro, and wireless transport networks, announced the availability of a comprehensive product design kit (PDK) to optimize performance and accelerate the time to market for high-speed Active Electrical Cables (AEC) using MaxLinear’s 5nm PAM4 DSP, Keystone. The PDK is a cost-cutting and time-saving tool for cable manufacturers who want to quickly integrate Keystone into their active electrical cables. MaxLinear’s Keystone PAM4 DSP offers a significant power advantage in AEC applications, which is increasingly becoming a critical factor for hyperscale data centers. The use of 5nm CMOS technology enables designers and manufacturers to build high-speed cables that meet the need for low power, highly integrated, high performance interconnect solutions that will drive the next generation of hyperscale cloud networks. Manufacturers taking advantage of MaxLinear’s PDK to optimize cable designs using Keystone PAM4 DSP will gain a distinct advantage over competitor solutions when trying to maximize reach and minimize power consumption. The PDK makes Keystone easy to integrate with strong applications support, multiple tools to optimize and monitor performance, and reference designs (SW and HW) to accelerate integration. Sophisticated software allows for quick design optimization for the lowest possible power consumption and maximizing cable reach. Cable designers can constantly monitor performance, route signals from any port to any port, and take advantage of hitless firmware upgrades. “MaxLinear is focused on providing not only industry-leading interconnect technologies but also a comprehensive suite of tools to support our manufacturing and design partners,” said Drew Guckenberger, Vice President of High Speed Interconnect at MaxLinear. “Our development kit for our Keystone products provides them with a path to take products to market more quickly and more cost-effectively.” Active electrical cables (AECs) are revolutionizing data center connections. Unlike passive cables, they actively boost signals, allowing for longer distances (up to 7 meters for 400G), higher bandwidth, and thinner, lighter cables. This makes them ideal for high-speed applications like top-of-rack connections (connecting switches to servers within the same rack); direct digital control (enabling flexible interconnectivity within racks and across rows); and breakout solutions (splitting high-speed connections into multiple lower-speed channels). The high-speed interconnect market – which includes active optical cables, active electrical cables, direct attach copper cables, and others – is expected to grow to $17.1B by 2028, up from $10.7B in 2021 according to a market forecast report from The Insight Partners. The Keystone Family The Keystone 5nm DSP family caters to 400G and 800G applications, featuring a groundbreaking 106.25Gbps host side electrical I/O, aligning with the line side interface rate. Available variants support single-mode optics (EML and SiPh), multimode optics and Active Electrical Cables (AECs), offering comprehensive solutions with companion TIAs. Host side interfaces cover ethernet rates of 25G, 50G, and 100G per lane over C2M, MR, and LR host channels. The line side interfaces, tailored for 100G/λ DR, FR, and LR applications, also support these rates. These devices boast extensive DSP functionality, encompassing line-side transmitter DPD, TX FIR, receiver FFE, and DFE. With exceptional performance and signal integrity, these DSPs occupy a compact footprint (12mm x 13mm), ideal for next-gen module form-factors like QSFP-DD800 and OSFP800. Additionally, they are available as Known Good Die (KGD) for denser applications, such as OSFP-XD. About MaxLinear, Inc. MaxLinear, Inc. is a leading provider of radio frequency (RF), analog, digital, and mixed-signal integrated circuits for access and connectivity, wired and wireless infrastructure, and industrial and multimarket applications. MaxLinear is headquartered in Carlsbad, California. MaxLinear, the MaxLinear logo, any other MaxLinear trademarks are all property of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved.

Read More

Smart Factory

PsiQuantum, Mitsubishi UFJ Financial Group and Mitsubishi Chemical Announce Partnership to Design Energy-Efficient Materials on PsiQuantum’s

PsiQuantum | January 30, 2024

PsiQuantum and Mitsubishi UFJ Financial Group announced that they are beginning work with Mitsubishi Chemical Group on a joint project to simulate excited states of photochromic molecules which have widespread industrial and residential potential applications such as the development of smart windows, energy-efficient data storage, solar energy storage and solar cells, and other photoswitching use cases. Qlimate, a PsiQuantum-led initiative that includes MUFG as a partner, focuses on using fault-tolerant quantum computing to crack the most challenging computational problems and accelerate the development of scalable breakthroughs across climate technologies, including more energy-efficient materials. Mitsubishi UFJ Financial Group (MUFG) is committed to supporting the world’s transition to a sustainable future, and to encourage industry access to the most promising breakthrough technologies. By pioneering PsiQuantum’s Qlimate solutions with industry leader Mitsubishi Chemical, MUFG is at the forefront of quantum computing for sustainability. This joint project will determine whether high-accuracy estimates of excited state properties are feasible on early-generation fault-tolerant quantum computers, specifically focusing on diarylethenes used for energy-efficient photoswitching applications. The project will allow Mitsubishi Chemical to gain early insights into how and when fault-tolerant quantum computing can be deployed in support of critical, scalable, sustainable materials. Because predicting the optical properties of materials requires complex analysis of excited states, standard algorithmic techniques for simulating these molecules (such as the Density Functional Theory, or DFT) often produce qualitatively incorrect results. The project will bring together Mitsubishi Chemical’s deep experience of computational chemistry and PsiQuantum’s leading expertise in fault-tolerant quantum computing to push the boundaries of approaching the complex physics in these systems and pave the way to developing new, more powerful energy-efficient photonic materials. Philipp Ernst, Head of Solutions at PsiQuantum, said: “PsiQuantum has dedicated teams who identify, describe and solve complex problem sets with best-in-class quantum algorithms. These are designed specifically to run on fault-tolerant quantum computers and will tackle previously-impossible computational challenges. This partnership will leverage our team’s unique know-how and Mitsubishi Chemical’s expertise in photochromic materials. We are grateful for MUFG’s visionary support in our mission to deploy high-impact quantum computing solutions to fight climate change.” Suguru Azegami, Managing Director, Sustainable Business Division, MUFG said: “We are excited to partner with PsiQuantum and Mitsubishi Chemical on our journey to explore possibilities of quantum computing technologies to solve the imminent global challenge. PsiQuantum’s vision to develop the first utility scale quantum computer before the end of the decade has inspired us, which led our initiative to participate in the Qlimate partnership as the first and sole member from Japan. Mitsubishi Chemical is leading efforts to use the cutting-edge technology to develop next generation materials and we are honored to support the company as its long term financial partner.” Qi Gao, Senior Chief Scientist, Mitsubishi Chemical said: “We are pleased to be part of the partnership and are grateful for MUFG’s support. Mitsubishi Chemical’s over 40 years background in computational chemistry and PsiQuantum’s domain specific knowledge for quantum control is a great fit with the collaboration effort of improving calculation accuracy on quantum device. We hope the partnership will accelerate the innovation of revolutionizing computational studies in chemistry and materials science.” About PsiQuantum PsiQuantum is a private company, founded in 2015 and headquartered in Palo Alto, California. The company’s only mission is to build and deploy the world’s first useful, large-scale quantum computer. Many teams around the world today have demonstrated prototype quantum computing systems, but it is widely accepted that much larger systems are necessary in order to unlock transformational applications across drug discovery, climate technologies, finance, transportation, security & defense and beyond. PsiQuantum’s photonic approach enables rapid scaling via direct leverage of high-volume semiconductor manufacturing and cryogenic infrastructure. The company is partnered with the SLAC National Accelerator Laboratory at Stanford University and Sci-Tech Daresbury in the United Kingdom. About Mitsubishi UFJ Financial Group, Inc. (MUFG) Mitsubishi UFJ Financial Group, Inc. (MUFG) is one of the world’s leading financial groups. Headquartered in Tokyo and with over 360 years of history, MUFG has a global network with approximately 2,000 locations in more than 50 countries. The Group has about 160,000 employees and offers services including commercial banking, trust banking, securities, credit cards, consumer finance, asset management, and leasing. The Group aims to “be the world’s most trusted financial group” through close collaboration among our operating companies and flexibly respond to all of the financial needs of our customers, serving society, and fostering shared and sustainable growth for a better world. MUFG’s shares trade on the Tokyo, Nagoya, and New York stock exchanges. About the Mitsubishi Chemical Group Corporation Mitsubishi Chemical Group Corporation (TSE: 4188) is a specialty materials group with an unwavering commitment to lead with innovative solutions to achieve KAITEKI, the well-being of people and the planet. We bring deep expertise and material science leadership in core market segments such as mobility, digital, medical and food. In this way, we enable industry transformation, technology breakthroughs, and longer, more fruitful lives for us all. Together, around 70,000 employees worldwide provide advanced chemistry-based solutions to deliver the core elements of our slogan — “Science. Value. Life.”

Read More

Additive Manufacturing

Teledyne Relays Unveils Innovative Multi-Function Timer Series

Teledyne Relays, Inc. | January 29, 2024

Teledyne Relays, a leading provider of cutting-edge relay solutions, introduces its new Multi-Function Timer product series, showcasing the company's commitment to delivering advanced, reliable, and versatile solutions for the industrial automation sector. Teledyne Relays Multi-Function Timer MFT series is a state-of-the-art solution designed for a wide variety of applications that demand precise timing control. The user-friendly design features three potentiometers for easy selection of timing functions and ranges, while the LEDs provide at-a-glance feedback of timing and relay status. The MFT series also features 7 selectable timing functions for a wide variety of applications Timing ranges from 0.1 seconds up to 100 hours Compact 17.5mm housing preserves valuable panel space Supply Voltages: 24VDC & 24-240VAC OR 12-240VAC/DC 5A SPDT output relay Engineered with the needs of electrical engineers, panel builders, and automation engineers in mind, these timers find application in various industries, including but not limited to Industrial Automation Manufacturing Process Control Systems HVAC and Refrigeration Agriculture and Irrigation Power Distribution “With the new Multi-Function Timer series, Teledyne Relays continues to lead in providing reliable and versatile solutions for industrial automation, ensuring precise timing control,” said Michael Palakian, Vice President of Global Sales and Marketing at Teledyne Relays. The Multi-Function Timer series from Teledyne Relays ensures precise timing control, offering unparalleled reliability across diverse applications and is available for ordering from Teledyne Relays or an authorized distributor. About Teledyne Relays Teledyne Relays is a world leader in high-performance coaxial switches, electromechanical, and solid-state relays, offering a wide range of solutions for various applications in the aerospace and defense, telecommunications, test and measurement, and industrial markets. With over 60 years of experience, Teledyne Relay has established a reputation for quality, reliability, and customer service excellence. About Teledyne Defense Electronics Serving Defense, Space and Commercial sectors worldwide, Teledyne Defense Electronics offers a comprehensive portfolio of highly engineered solutions that meet your most demanding requirements in the harshest environments. Manufacturing both custom and off-the-shelf product offerings, our diverse product lines meet emerging needs for key applications for avionics, energetics, electronic warfare, missiles, radar, satcom, space and test and measurement.

Read More

Events