The FUNMAT PRO High-Temperature 3D Printers By INTAMSYS

KERRY STEVENSON| August 12, 2019
THE FUNMAT PRO HIGH-TEMPERATURE 3D PRINTERS BY INTAMSYS
In the course of writing stories for Fabbaloo for many years, I’ve been fortunate to see firsthand the gradual development of 3D printing technology from rudimentary beginnings to today’s worldwide movement. But within that enormous wave of additive manufacturing that still is yet to crest, there are smaller ripples that cumulatively add to the massive capabilities of the technology today.

Spotlight

Somfy Group

Somfy Group is the global leader in opening and closing automation for both residential and commercial buildings. Somfy Group is present in 58 countries, and has 7,800 employees.

OTHER ARTICLES

Computer Aided Manufacturing (CAM): Major Challenges and Their Solutions

Article | December 16, 2021

Computer-aided manufacturing (CAM) is a technology that revolutionized the manufacturing business. Pierre Bézier, a Renault engineer, produced the world's first real 3D CAD/CAM application, UNISURF CAD. His game-changing program redefined the product design process and profoundly altered the design and manufacturing industries. So, what is CAM in its most basic definition? Computer-aided manufacturing (CAM) is the application of computer systems to the planning, control, and administration of manufacturing operations. This is accomplished by using either direct or indirect links between the computer and the manufacturing processes. In a nutshell, CAM provides greater manufacturing efficiency, accuracy, and consistency. As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity.” – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca In light of the numerous advantages and uses of computer-aided manufacturing, manufacturers have opted to use it extensively. The future of computer-aided manufacturing is brightening due to the rapid and rising adoption of CAM. According to Allied Market Research, the global computer-aided manufacturing market was worth $2,689 million in 2020 and is expected to reach $5,477 million by 2028, rising at an 8.4% compound annual growth rate between 2021 and 2028. Despite all this, each new development has benefits and challenges of its own. In this article, we'll discuss the benefits of CAM, the challenges that come with it, and how to deal with them. Let's start with the advantages of computer-aided manufacturing. Benefits of Computer Aided Manufacturing (CAM) There are significant benefits of using computer-aided manufacturing (CAM). CAM typically provides the following benefits: Increased component production speed Maximizes the utilization of a wide variety of manufacturing equipment Allows for the rapid and waste-free creation of prototypes Assists in optimizing NC programs for maximum productivity during machining Creates performance reports automatically As part of the manufacturing process, it integrates multiple systems and procedures. The advancement of CAD and CAM software provides visual representation and integration of modeling and testing applications. Greater precision and consistency, with similar components and products Less downtime due to computer-controlled devices High superiority in following intricate patterns like circuit board tracks Three Challenges in CAM and Their Solutions We have focused on the three primary challenges and their solutions that we have observed. Receiving Incomplete CAD Updates Receiving insufficient CAD updates is one of the challenges. If, for example, the part update from a CAD engineer does not include the pockets that are required in the assembly, to the CAM engineer. SOLUTION: A modeler that enables developers of a CAM programs to create intuitive processes for features such as feature extraction and duplication across CAD version updates. A modeler is capable of recognizing and extracting the pocket's architecture and the parameters that define it. Additionally, the CAM application can enable the engineer to reproduce the pocket in a few simple steps by exploiting the modeler's editing features such as scaling, filling, extruding, symmetrical patterning, and removing. Last Minute Design Updates The second major challenge is last-minute design changes may impact manufacturers as a result of simulation. SOLUTION: With 3D software components, you may create applications in which many simulation engineers can work together to make design modifications to the CAD at the same time, with the changes being automatically merged at the end. Challenging Human-driven CAM Manufacturing The third major challenge we have included is that CAM engineers must perform manual steps in human-driven CAM programming, which takes time and requires expert CAM software developers. Furthermore, when the structure of the target components grows more complicated, the associated costs and possibility of human failure rise. SOLUTION: Self-driving CAM is the best solution for this challenge. Machine-driven CAM programming, also known as self-driving CAM, provides an opportunity to improve this approach with a more automated solution. Preparing for CAM is simple with the self-driving CAM approach, and it can be done by untrained operators regardless of part complexity. The technology handles all of the necessary decisions for CAM programming operations automatically. In conclusion, self-driving CAM allows for efficient fabrication of bespoke parts, which can provide substantial value and potential for job shops and machine tool builders. Computer Aided Manufacturing Examples CAM is widely utilized in various sectors and has emerged as a dominant technology in the manufacturing and design industries. Here are two examples of sectors where CAM is employed efficiently and drives solutions to many challenges in the specific business. Textiles Virtual 3D prototype systems, such as Modaris 3D fit and Marvellous Designer, are already used by designers and manufacturers to visualize 2D blueprints into 3D virtual prototyping. Many other programs, such as Accumark V-stitcher and Optitex 3D runway, show the user a 3D simulation to show how a garment fits and how the cloth drapes to educate the customer better. Aerospace and Astronomy The James Webb Space Telescope's 18 hexagonal beryllium segments require the utmost level of precision, and CAM is providing it. Its primary mirror is 1.3 meters wide and 250 kilograms heavy, but machining and etching will reduce the weight by 92% to just 21 kilograms. FAQ What is the best software for CAM? Mastercam has been the most extensively utilized CAM software for 26 years in a row, according to CIMdata, an independent NC research business. How CAD-CAM helps manufacturers? Customers can send CAD files to manufacturers via CAD-CAM software. They can then build up the machining tool path and run simulations to calculate the machining cycle times. What is the difference between CAD and CAM? Computer-aided design (CAD) is the process of developing a design (drafting). CAM is the use of computers and software to guide machines to build something, usually a mass-produced part.

Read More

What are the Risks that Manufacturing Face in the Current Times?

Article | December 30, 2021

Risk management in manufacturing has always been a top priority for manufacturers to avoid any unfortunate incidents. As a result, it is possible to create a more secure work environment for employees by conducting risk assessments and implementing remedies. “If you don’t invest in risk management, it doesn’t matter what business you’re in, it’s a risky business.” – Gary Cohn, an American Business Leader. As of 2019, the worldwide risk management market was valued at $7.39 billion, and it is expected to rise at a CAGR of 18.7% from 2020 to 2027, according to allied market research. Why is Risk Assessment Critical in Manufacturing? The manufacturing industry must have a credible risk assessment and management plan to defend itself from any breaches. Risk assessment helps firms understand the dangers they face and their implications if their systems are compromised. Hence, risk assessment is very critical in the manufacturing industry. Five Risk Assessment Principles Identify hazards/risks - Employers must examine their workers' health and safety risks. Therefore, an organization must regularly inspect its employee’s physical, mental, chemical, and biological threats. Identify who may be hurt and in what way – Identifying the personnel both full-time and part-time at-risk. Employers must also examine threats to agency and contract personnel, visitors, clients, and other visitors. Assess the risks and act accordingly - Employers must assess the likelihood of each danger causing injury. This will evaluate and lower the chance at the working space. Even with all safeguards, there is always some danger. Therefore, employers must assess if danger is still high, medium, or low risk. Get the Risks Documented - Employers with five or more employees must record the critical findings of the risk assessment in writing. In addition, register any risks identified in the risk assessment and actions to minimize or eliminate risk. This document confirms the evaluation and is used to examine working practices afterward. The risk assessment is a draft. It should be readable. It shouldn't be hidden away. The risk assessment must account for changes in working techniques, new machinery, or higher work objectives. 5 Manufacturing Risks to Consider in 2022 Accidents at Work Even if official safety policies and programs are designed, followed, and enhanced, manufacturers may endure workplace accidents and injuries. Risk assessment for workplace accidents assists in mitigating the negative impact on both employees and the organization. Environmental Mishaps Manufacturers have distinct issues regarding fuel handling and hazardous waste disposal in facilities. Sudden leaks or spills may be extremely costly to clean up and result in fines from state and federal agencies. Risk assessments for such plant accidents assist businesses in mitigating financial losses. Equipment Breakdowns Essential machinery throughout the production process might fail at any time, incurring significant repair or replacement costs. Therefore, it's critical to recognize that business property insurance may not cover mechanical issues. Risk assessment and prepayment solutions protect against equipment failures without interfering with typical company operations. Supply Chain Disruption Dependence on your supply chain may result in unintended consequences that are beyond your control. For example, if you experience downtime on the manufacturing line due to a supplier's failure to supply materials or parts, you risk losing revenue and profitability. If a disturbance to your supply chain poses a hazard, risk management can assist you in managing it more effectively by quickly identifying the risk and providing a suitable response. Operation Temporarily Suspended Depending on the severity of the weather event, a factory might be severely damaged or perhaps utterly wrecked. While major repairs or rebuilding are being undertaken, recouping lost income might be vital to the business's future profitability. Risk assessment in this area enables your organization to budget for overhead expenditures such as rent, payroll, and tax responsibilities during the period of suspension of operations. Final Words Risk management is critical in manufacturing because it enables manufacturers to comprehend and anticipate scenarios and create a well-planned response that avoids unnecessary overhead costs or delays in delivering the production cycle's final result. Manufacturing risks are undoubtedly not limited to the risks listed above and may vary according to the nature of the business and regional environmental conditions. Therefore, create a well-defined strategy to overcome threats in your business and be productive at all times. FAQ How are manufacturing business risks classified? In most cases, the business risk may be categorized into four types: strategic risk, regulatory compliance risks, operational compliance risks, and reputational risks. Why should a manufacturer conduct a risk assessment? Every manufacturing employment has risks for injury or illness. But risk evaluations can significantly minimize workplace injuries and illnesses. In addition, they assist companies in discovering strategies to reduce health and safety risks and enhance knowledge about dangers.

Read More

Rex Moore Proves Project Business Automation Provides Predictive and Proactive Resource Requirements

Article | July 28, 2021

Rex Moore Group, Inc. is a Top50 electrical contractor delivering unmatched integrated electrical solutions. As an early adopter of Lean manufacturing principles, Rex Moore has created a company-wide culture of continuous improvement that drives significant value to their clients. The firm contracts and performs both design/build and bid work for all electrical, telecommunications, and integrated systems market segments. Rex Moore has a full-service maintenance department to cover emergency and routine requirements for all facilities, whether an existing facility or one that has been recently completed by the company. The ability to negotiate and competitively bid various forms of contracts including lump-sum, fixed fee, hourly rate, and cost-plus work as a prime contractor, subcontractor, or joint venture is enhanced with Project Business Automation (PBA) from Adeaca. This solution permits the company to propose work only if they are in a position to be competitive in the marketplace and provide excellent service with fair compensation. Rex Moore used Adeaca PBA as a construction management software for builders and contractors to integrate and facilitate its business processes in its ERP system. Together with Microsoft Dynamics, PBA integrated processes across the company on a single end-to-end platform. This allowed the company to replace 15 different applications with a single comprehensive system, eliminating the costs and inefficiencies associated with multiple systems and silos of information.

Read More

How Manufacturing Digitalization Benefits Businesses in 2022

Article | December 14, 2021

The manufacturing industry has evolved to new heights of innovation, productivity, and excellence with digital transformation. Manufacturing digitalization has made operational procedures more skilled, accurate, and time-savvy. “Many companies simply are not willing to change or think they are done once they make a change. But the truth is technology; consumer demands, the way we work, human needs and much more are constantly changing.” Michael Walton, Director, Industry Executive (Manufacturing) at Microsoft With a CAGR of 19.48 percent between 2021 and 2026, the digital transformation in the manufacturing market is expected to reach USD 263.93 billion by 2026. Manufacturing plants adopt digital technology to improve, automate, and modernize processes as part of Industry 4.0. So, what are the key benefits of digitalization for manufacturers? This article will elaborate on the top five benefits of digital manufacturing transformation. How to Define Digital Manufacturing? Manufacturing digital transformation involves integrating digital technologies into processes and products to improve manufacturing efficiency and quality. Manufacturing's digital transformation aims to increase operational efficiency and reduce expenses. The digital transformation techniques ensure product quality. It also makes work more efficient, safe, and stress-free. What Is Included in Manufacturing Digitization (Industry 4.0)? Industry 4.0 is the digitalization of manufacturing. Cyber-physical systems, IoT, and cloud computing are current trends in manufacturing automation and data exchange. Connected devices, cloud computing power, and the modern emphasis of lean, efficient operations enable Industry 4.0 to construct advanced and innovative smart factories. Industry 4.0 includes design, sales, inventories, scheduling, quality, engineering, customer and field service. Five Benefits of Digital Transformation in Manufacturing Manufacturing organizations can benefit from digitalization in a variety of ways. It can help make the work more efficient, decentralized, and secure. It further creates new business opportunities and attracts new talent to the industry. Additionally, integrating products into a digital ecosystem increases their value and appeal. Let’s dig deeper into each of the five key benefits. Reduces Costs Technology is an invaluable companion in reducing the manufacturing company's expenses in the future. The incorporation of digital technology results in the transformation of procedures and the digitization of documents, resulting in overall process optimization. Therefore, a reduction in labor costs might be expected as a result of the elimination of unnecessary expenditures. Additionally, digitization enables businesses to assess and estimate expenses considerably more precisely, ensuring that budgets stay on track. Additionally, it eliminates andsubstitutes inefficient jobs within processes, significantly increasing their efficiency. This efficiency is translated into time savings, which results in a substantially more cost-effective manufacturing process. Decentralized Production Manufacturing digital transformation allows organizations to supervise manufacturing remotely, allowing production to continue uninterrupted. In rare cases like Covid-19, digitalized businesses have not had to cease or even slow down production. These systems can work without interruptions for much longer than any worker. Digitalization also boosts methodology flexibility and reactivity. For example, if a production plant has a problem, an automatic alert is generated, and the issue is resolved regardless of the day, time, or presence. Improved Operational Efficiency Smart product connectivity allows devices to connect and communicate with each other (M2M). This connectivity enables decentralized decision-making. Many duties no longer require an employee to be physically present. New manufacturing and production models minimize boring, risky activities while increasing accuracy, efficiency, and responsiveness. Transforming businesses through digital means making better decisions based on real-time data. Training, changes, and repairs are no longer issues due to reduced frequency and automation. New Business Opportunities New digital technologies enable the manufacture of previously unviable products and services, generating new revenue streams. Also, new services (innovation or reorientation) are launched considerably faster. Companies may utilize big data and AI to experiment, anticipate trends, and predict about new advancements. These technologies can help organizations become more eco-friendly and create products that are less detrimental to our environment. Attracts New Talent Professionals with fundamental talents in this complicated and disruptive environment are drawn to digitalizedorganizations that are up-to-date with trends and processes. Also, if the change is managed well, it will lead to higher profitability, increasing employee satisfaction. Human motivation, along with excellent digital technologies, will reflect in the company's production and profitability. Dusseldorf@Germany: The Deloitte Digital Factory The digital factory in Dusseldorf provides a flexible setting for innovative workshops and training, bringing together the old and new worlds of supply chain and industrial operations to provide a seamless experience. Specific use case examples, as well as the digital solutions sector, will motivate and encourage businesses to get on their digital transformation journeys, making use of the most up-to-date technologies in the process. Final Words Manufacturing digitalization has a lot to offer the industry, and many manufacturers are capitalizing on this new phase of the industrial revolution by incorporating cutting-edge technologies into manufacturing and business operations. As said previously, the benefits of digital transformation in the manufacturing business are increasing the importance of digitalization in the industry. Transform your traditional manufacturing operating processes with these new manufacturing trends and observe the results that other benefitting manufacturing businesses have achieved. FAQ Why is digitalization vital in manufacturing? Manufacturing process digitization improves overall business performance. But the results are seen across the factory. Digital transformation improves working conditions for employees and streamlines daily operations. How are digitization and digitalization different? Digitalization is a transformation of data and processes. Digitalization is the use of digital technologies to collect data, identify patterns, and make better business decisions. How digital technologies are applied in manufacturing? Digital manufacturing technologies enable the integration of systems and processes across all stages of production, from design to production and beyond.

Read More

Spotlight

Somfy Group

Somfy Group is the global leader in opening and closing automation for both residential and commercial buildings. Somfy Group is present in 58 countries, and has 7,800 employees.

Events