Testing Stepper Motors with Many 3D-Printed Gears

CAMERON COWARD| July 01, 2019
TESTING STEPPER MOTORS WITH MANY 3D-PRINTED GEARS
3D printing is unquestionably amazing, but it does have some downsides. Most hobby 3D printers use the fused-filament fabrication process, which is affordable but somewhat imprecise. That makes it great for making enclosures and prototype mechanical parts, but usually unsuitable for parts that need to interface together smoothly. Gears are a great example of those kinds of parts, because they only work well if they mesh well.

Spotlight

AON3D

AON3D is a rapidly growing startup on a mission to put industrial 3D printing capabilities into the hands of those who need it most. Our technology has made it 10 times cheaper than before to 3D print with advanced thermoplastics, and we continue to push the boundaries on commercializing new materials for 3D printing.

OTHER ARTICLES

The Unrelenting Growth of Technology in Manufacturing

Article | May 13, 2021

When the manufacturing industry began to embrace digital technology a decade ago, it adopted a new identity — smart manufacturing or Industry 4.0. Applying cloud, automation, analytics, machine learning and big data to production operations created a connected ecosystem for manufacturing and supply chain management, and became a high-growth market. At the start of 2020, the sector was on track to grow into a market worth more than $300 billion in the coming five years. Then the pandemic hit. By spring, millions of workers had lost their jobs. Some plants closed temporarily or slowed production so workers could spread out to maintain a safe distance from one another. Investment in smart manufacturing fell too, by 16 percent between March and April alone. Some researchers predicted that such a pull-back would dampen investment through 2025. But the conversations we’ve had with C-suite manufacturing executives and service providers suggest investment in smart manufacturing will intensify. By 2025, it could be worth more than $400 billion. It’s no wonder.

Read More

It's Time to Redesign Your Business with Manufacturing Analytics

Article | December 21, 2021

Consumer demand has shifted dramatically in recent years, and manufacturers are trying to adapt to this shift. To maintain high product quality, minimize costs, and optimize supply chains, manufacturing analyticshas become essential for manufacturers. Manufacturing analyticsis the process of gathering and analyzing data from various systems, equipment, and IoT devices in real-time to get essential insights. As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity. – Matt Mong Manufacturing analyticscan assist in maintaining production quality, boost performance with high-profit returns, decrease costs, and optimize supply networks. This article will outline manufacturing analyticsand present a list of possible application cases. It will also highlight the benefits of manufacturing analyticsfor any shop floor or factory. Manufacturing analytics: An Overview With manufacturing analytics, we can streamline and speed up the entire process. Data interchange and automation helps in speeding up the production process. Manufacturing analyticsuses predictive manufacturing, big data, Industrial IoT, network virtualization, and machine learningto produce better scalable production solutions. Manufacturing analyticscollects and analyses data from many sources via sensors embedded in machinery to identify areas for improvement. Data is collected and presented in an easy-to-understand structure to illustrate where difficulties emerge throughout the process. In short, manufacturing analyticscollects and analyses large volumes of data to reveal insights that might improve performance. Users can also obtain automated business reports to reply in real-time. Why Manufacturing analytics is Vital for Leading Businesses There are numerous benefits of manufacturing analyticsthat drive any company’s production and overall manufacturing business growth. The benefits of manufacturing analyticsfall into three distinct categories as below. It reduces the overall cost: Analytics may save a significant amount of money if used more efficiently. Labor costs are also reduced due to automation and semi-autonomous machinery. Similarly, preventive and prescriptive maintenance programs may save money while enhancing productivity. It boosts profits for businesses: Manufacturers can respond swiftly to changes in demand using real-time insights in production, inventory management, and demand and supply forecasting. For example, assume the data indicates that they are approaching their maximum capacity. In such instances, they can increase over time, increase capacity, modify procedures, or tweak other production areas to adapt and maintain delivery times. Other unforeseen benefits: There are several advantages to the increased capabilities enabled by manufacturing analytics. These benefits include lower energy use, safer environmental practices, fewer compliance failures, and more customer satisfaction. Five Real-world Applications of Manufacturing Analytics Predictive Maintenance A machine's analytics uses aggregate data from real-time detectors to anticipate when it needs to be replaced or functioning irregularly. This process helps predict machine failure or equipment defects. Analytics can assist in determining a plant's capacity and how many products are produced by the unit in every production cycle, which is helpful in capacity planning. In addition, analytics may help determine the ideal number of units to create over time by considering capacity, sales predictions, and parallel schedules. Predictive analytics solutions can automate maintenance requests and readings that shortens the procedure and reduce maintenance expenses. Product Development Product development is an expensive process in manufacturing. As a result, businesses must invest in R&D to develop new product lines, improve existing models, and generate new value-added services. Earlier, this approach was in place by repeated modeling to get the finest outcome. This approach can now be modeled to a large extent, with the help of data science and technologically superior analytics. Real-world circumstances can be replicated electronically using "digital twins" and other modeling approaches to anticipate performance and decrease R&D expenses. Demand Forecasting Many factors that might help in the plan significant capital expenditures or brief breakdowns can be explained using historical data and a few high-impact variable strategies. For example, consider the seasonality of products like ice cream. As a result, historical market data and a few high-impact factors can help explain numerous variables and plan major capital expenditures or short-term shutdowns. In addition to demand forecasting, predictive analytics incorporates advanced statistical techniques. With predictive analytics, a wide range of parameters, including customer buying behavior, raw material availability, and trade war implications, may be taken into consideration. Warranty Analysis Warranty support may be a load for many manufacturers. Warranties are frequently based on a "one-size-fits-all" approach that is broader. This approach introduces uncertainty and unanticipated complications into the equation. Products may be modified or updated to decrease failure and hence expense by using data science and obtaining information from active warranties in the field. It can also lead to better-informed iterations for new product lines to minimize field complaints. Managing Supply Chain Risks Data may be recorded from commodities in transit and sent straight from vendor equipment to the software platform, helping to enable end-to-end visibility in the supply chain. Manufacturing analyticsallows organizations to manage their supply chains like a "control tower," directing resources to speed up or slow down. They may also order backup supplies and activate secondary suppliers when demand changes. Final Words Businesses should adapt to changing times. Using analytics in manufacturinghas altered the business industry and spared it from possible hazards while boosting production lines. Industry 4.0's route has been carved. Manufacturing analyticsis the key to true Industry 4.0, and without it, the data produced by clever IoT devices is meaningless. The future is data-driven, and success will go to those who are ready to adopt it. The faster adoption, the sooner firms go ahead of the competition. FAQ How can data analytics help manufacturers? Data analytics tools can help manufacturers analyze machine conditions and efficiency in real-time. It enables manufacturers to do predictive maintenance, something they were previously unable to accomplish. Why is data so crucial in manufacturing? Data helps enhance manufacturing quality control. Manufacturers can better understand their company's performance and make changes by collecting data. Data-driven manufacturing helps management to track production and labor time, improve maintenance and quality, and reduce business and safety concerns. What is Predictive Manufacturing? Predictive manufacturing uses descriptive analytics and data visualization to offer a real-time perspective of asset health and dependability performance. In addition, it helps factories spot quality issues and takes remedial action quicker by eliminating the waste and the cost associated with it.

Read More

2022: The Year of Robotics Industry Expansion

Article | November 12, 2021

Robotics industry growth has accelerated rapidly across several industries. It has aided manufacturers in overcoming numerous barriers related to real-time communication, workplace safety, and overall manufacturing cost and timeliness. However, if we trace its history back to 1961 when George Charles Devol introduced the first robot, dubbed 'UNIMATE,' it has exponentially grown and utilized across sectors to make operations more effortless, precise, and faster. “As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity.” – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca. However, the industry has seen snags or difficult times due to market fluctuations, unfavorable situations, and the need to remain competitive in the drive for expansion. To thoroughly understand the robotics industry, let us examine each component that surrounds it. Industrial Robotics Global Market Size According to recent Allied Market Research studies, the global industrial robotics market was worth $37,875 million in 2016 and is expected to reach $70,715 million by 2023, rising at a 9.4% compound annual growth from 2017 to 2023. Industrial Robotics Market Analysis The global industrial robotics market is primarily driven by a global increase in labor costs, which has compelled firms to replace human labor with robots. As a result, Asia and Europe are the world's fastest-growing areas, with top companies such as ABB, Fanuc, KUKA, Kawasaki, and Yaskawa Electric Corporation headquartered in the region. The global market of robotics has been segmented by its type, industry, and function. Type Industry Function Articulated Automotive Soldering and Welding Cartesian Electrical & Electronics Materials Handling SCARA Healthcare & Medicine Assembling & Disassembling Cylindrical Rubber & Plastics Painting and Dispensing Others if any Machinery & Metals Cutting and Processing Food & Beverages Milling Precision & Optics Others if any Others if any Industries That Are Pioneering the Use of Robotics As we have observed, the global robotic market will continue to rise in the future years. Therefore, let us examine which industries will extend their use of robotics in their operations. Healthcare & Medicine Medical robots help surgeons optimize hospital logistics and free up the working staff to focus on patients. In the healthcare field, robots are revolutionizing surgery by speeding supply delivery and disinfection and freeing up time for doctors to interact with their patients. da Vinci System – A General Surgical Robot The da Vinci System is a surgical robot that focuses on a wide range of urological, bariatric, and gynecological surgical treatments. In addition, Stryker's MAKO System also specializes in orthopedic surgery, specifically partial and total knee replacements. The da Vinci SP system is cleared for use in the United States exclusively for single-port urological procedures, lateral oropharyngectomy (often referred to as radical tonsillectomy), and tongue base excision. Law Enforcement Police robots are meant to gain access to areas inaccessible or dangerous to first responders, and they are capable of manipulating items and gathering data using several technologies. It encompasses robots capable of operating in various conditions and displaying a range of data and communication capabilities. Agriculture & Food Industry Farm equipment is now routinely equipped with sensors that utilize machine learning and robotics to identify weeds, compute the appropriate quantity of herbicide to spray, or learn to detect and pick strawberries, for instance. Additionally, in the food business, robotics has been used to do repetitive tasks such as picking and placing food items and cutting and slicing food items during any given food item. For instance, the modern bakery business uses robotics to perform traditional craft skills and produce any product in large quantities while maintaining high quality and hygiene standards. Transportation The transportation sector is highly leveraging robotics. The powerful transport capability, advanced control technology, and sensing precision are some of the benefits that make the transportation robots widely utilized in this sector. These benefits from robotics help the sector convey various commodities in factories, restaurants, and medical institutions, among other locations. Manufacturing Robots are employed in manufacturing to do repeated jobs and streamline the overall assembly process. Additionally, robots and humans can also collaborate on product making. Robots can replace humans for hazardous tasks or processes that need large quantities of materials, which might be hazardous for a human employee to handle. Factors Sustaining the Growth of the Robotics Industry Reduces Manufacturing Costs: Robotics application in all industries reduces the overall manufacturing process running costs. Improves Product Quality: The precision of robotics throughout the manufacturing process helps produce high-quality items that meet target client needs. Offers Competitive Market: Increased income due to utilizing the benefits of robotics applications makes any industry more competitive. Speed-ups Production Time: Robotics speeds up production and helps manufacturers increase output. Offers Task or Process Flexibility: Robotics can weld, cast, mold, assemble, machine, transfer, inspect, load, and unload items, among other duties. So, it gives the manufacturer process flexibility. Reduces Excessive Use and Waste of Production Materials: Robotics employs the exact quantity of material required for the manufactured product, reducing waste and overuse of materials. Offers a Safe Working Place: Robotics improves employee health and safety by performing tasks that humans find risky. For example, in the chemical industry, a human employee may not do a hazardous task. In such instances, robots can replace people. Final Words The rise of the robotics industry has accelerated dramatically, and it is now spreading its wings across industries. Research firm IDC provided a projection for the commercial robot market, forecasting that the market will exceed $53 billion by 2022, with a compound annual growth rate of more than 20%. In addition, several advantages of robotics such as safety, productivity, uniformity, and perfection are pushing its expansion and making it an essential element of industry 4.0. FAQs Why are robots the future of the manufacturing industry? The use of robots in manufacturing has improved process efficiency and product quality. As a result, robots are gaining favor in production and becoming the future of manufacturing. Which industries make the most use of robotics? Healthcare, agriculture, food, and manufacturing are the industries that are embracing robotics to get the most out of it. How is manufacturing utilizing robotics? Manufacturing uses robotics for repetitive tasks. This helps in the reduction of errors and human efforts. It also improves production efficiency. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "Why are robots the future of the manufacturing industry?", "acceptedAnswer": { "@type": "Answer", "text": "The use of robots in manufacturing has improved process efficiency and product quality. As a result, robots are gaining favor in production and becoming the future of manufacturing." } },{ "@type": "Question", "name": "Which industries make the most use of robotics?", "acceptedAnswer": { "@type": "Answer", "text": "Healthcare, agriculture, food, and manufacturing are the industries that are embracing robotics to get the most out of it." } },{ "@type": "Question", "name": "How is manufacturing utilizing robotics?", "acceptedAnswer": { "@type": "Answer", "text": "Manufacturing uses robotics for repetitive tasks. This helps in the reduction of errors and human efforts. It also improves production efficiency." } }] }

Read More

Lead Generation for Manufacturers: 5 Effective Techniques That Work

Article | January 4, 2022

Lead generation for manufacturers has always been tough due to a lack of knowledge about new technology and trends that can help them generate more business leads. There are still a lot of small and mid-sized manufacturing companies that rely on antiquated manufacturer lead generation methods. In this article, we'll discuss some proven methods for generating leads that can help you increase your company's sales and improve your overall return on investment. "Don’t think of your lead as "LEADS." Instead, think of them as people who are frustrated because understanding and buying your product is too hard. Your job is to make it easy for them to learn about your product and get started. " —Andy Pitre, VP of Product, HubSpot So let's get started. Factors That Must Be Aligned to Drive New Business Leads Landing Pages Landing pages are mini-websites embedded into your site. To deliver an experience that speaks directly to the user's intent, marketers use landing pages. Create unique landing pages for every industrial lead generation campaign. Calls-To-Action To generate quality leads, you need to have a strong call to action (CTA). CTAs are usually buttons that allow users to submit information, visit a landing page, or download an e-book or white paper. Your CTA must be compelling. Give your prospects a reason to click and remove any barriers to the click. CTAs should be bold, high-contrast, and easily identifiable. Forms Without forms, it is impossible to collect leads. Therefore, visitors will be asked to fill out forms that collect their contact information in exchange for an offer. Offers Every lead contains a transaction. A company provides a valuable service in exchange for a prospect's contact information. You won't get many leads unless you provide value to your potential customers. This offer comes in the form of an e-book, consultation, coupon code, or whitepaper. To generate more leads, make compelling offers. Website The above components can't exist if you don't have a website. If you want to emphasize your business, you need to generate quality leads. Why? Because most of today's B2B buyers are millennials, who are highly tech-savvy and increasingly conduct their supplier research online. How to Generate Manufacturing Leads: 5 Effective Techniques Create a Website That Converts "The lead generation process starts by finding out where our target market ‘lives’ on the web." – Wayne Davis Your website should be a trusted source of quality leads. Unfortunately, many companies lose sight of this and develop websites that are cumbersome and difficult to browse, causing a rift between you and your potential customers. Don't expect people to behave if your site doesn't encourage them to act. Your website should have clear "call to action" buttons and lead capture options that allow visitors to contact you in a simple and pleasant way. Additionally, there are website optimization tools available, including PageSpeed Insights, Hotjar, Google Optimize, and WAVE. All of the above-mentioned website optimization tools provide complimentary services. So, this is the most accessible and most reliable approach to generating web leads. Make Descriptive Infographics Infographics are a great way to provide prospects with helpful information while motivating them to contact you. Most importantly, infographics establish your company as a thought leader and unconsciously identify you with industry authority. According to recent surveys, Nearly 41% of respondents indicated that infographics and illustrations are the most effective solutions for achieving their business objectives. On social media, infographics receive three times the number of shares as other types of content. Articles that included infographics received 72% more views than standard articles. A great infographic has a great design. If your organization lacks an in-house graphics team, you can simply locate a freelance designer to create a stunning infographic for you. Your infographics are ageless pieces of material that can be reused for smart marketing and lead generation manufacturing. Here's an example of an infographic from Digital Marketing Philippines from 2019 that received over 1,600 shares and is jam-packed with data and text. In this way, you can see how the company may have gotten its leads from these 1600 shares, each of which is a potential customer. Host an Event According to Bizzabo, 86% of senior management (Senior Managers, Executives, and Board Members) believe that in-person events are critical to the success of their company. The majority of B2B marketers (97%) believe in-person events have a significant impact on achieving business goals. According to Marketing Charts, 68% of B2B marketers agree that in-person events aid in lead generation for manufacturers, while case studies help with lead conversion and acceleration. Improve manufacturing lead generation through events that can occur both online and offline. Organize any kind of event to attract your target market while collecting contact information. Use live events to interact with consumers in real-time, answering questions, addressing objections, learning about your audience, and guiding prospects through the sales funnel. Consider webinars, workshops, seminars, meetups, and conferences. Create a Value-Packed Newsletter "Content is the fuel for your lead generation efforts." – Dayna Rothman According to the Content Marketing Institute, 31% of B2B marketers believe email newsletters are the most effective way to nurture leads. 81% of B2B marketers report that email newsletters are their most frequently used form of content marketing. Create a must-read newsletter that invites interested prospects to engage and remain connected with your company. This enables you to stay top-of-mind with consumers and promote your products and services to move prospects along the sales funnel. The newsletter can have new blog entries, product or service updates, special deals, upcoming events, and recommended reading from other thought leaders. Incorporate SEO into Your Marketing Plan According to Intergrowth, 61% of B2B marketers say SEO and organic traffic generate more leads than any other type of marketing. Search engine leads convert at a rate of 14.6%, while outbound leads (cold calling, direct mail, etc.) convert at a rate of 1.7%. Manufacturers are no exception when it comes to the importance of search engine optimization (SEO). As a result, you may generate many leads with the correct marketing approach and a profound grasp of SEO for manufacturers. Final Words When we consider the statistics explained earlier in this article, we can see the benefits of all of the techniques mentioned and how they can help you increase your lead generation and, as a result, your overall business ROI. Thus, we can refer to the above-mentioned lead generation techniques as sales-driven strategies that will assist you at every lead generation and conversion stage. Improved lead generation for manufacturers enables businesses to reach a vast customer base and generate more high-quality leads. FAQ What is a high-quality lead in manufacturing? Leads of high quality have an increased propensity to convert into paying consumers. The more qualified your leads are, the more likely they will buy your product or service. What are the lead generation challenges? Making accurate data, shaping conversations, and converting qualified leads into sales are some of the significant challenges in manufacturing lead generation.

Read More

Spotlight

AON3D

AON3D is a rapidly growing startup on a mission to put industrial 3D printing capabilities into the hands of those who need it most. Our technology has made it 10 times cheaper than before to 3D print with advanced thermoplastics, and we continue to push the boundaries on commercializing new materials for 3D printing.

Events