Technologies to Adopt Now to Enable the Smart Warehouse Concept

SMART_WAREHOUSE
Why should warehouses be left behind as everything gets smarter in the manufacturing world? The future warehouse will be smarter and more innovative to speed up supply chain management procedures and assist businesses in intelligently segregating their raw materials and manufactured goods.

So, what does  it mean to have "a smart warehouse"?

A smart warehouse is a big infrastructure that stores raw materials and manufactured goods and employs machines and computers to handle routine warehouse tasks that humans previously performed. Smart warehouses are inspired by smart factories and operate in a data-driven environment. It is the ability of the system in the warehouse to make it more efficient and productive by utilizing networked, automated technology.

“I advocate business leaders get to know more about what AI can do and then leverage AI in proofs of concept.”

– Michael Walton, Director, Industry Executive (Manufacturing) at Microsoft


According to EASYECOM, nine out of ten businesses intend to include commercial service robots into their operations in some form. By 2025, it is projected that there will be roughly 23,000 robotic warehouses in the United States alone, up from only 2,500 in 2018.

Furthermore, the global smart warehousing market is expected to grow at a CAGR of 11.5 percent from USD 14.8 billion in 2021 to USD 25.4 billion in 2026, according to GlobeNewswire. As can be seen, the current warehouse automation trends are scaling up the worldwide market for smart warehouses, and the value of the smart warehouse business has a long way to go in the future.

So, what are the technologies that are changing traditional warehouses into intelligent warehouses? Continue reading this article to get a better understanding of this.


Top 5 Warehouse Technologies to Take On

Numerous manufacturing and non-manufacturing organizations, including IKEA, NIKE, and WALMART, utilize smart warehouses to streamline their overall operations. The technologies listed below assist many of them in implementing the modern warehousing idea.


A Warehouse Management System

Warehouse Management Systems, or WMSs, are comprehensive software systems that consolidate all of your critical data onto a single platform that can be easily accessed by team members and selected supply chain partners. This data compartmentalization allows for lightning-fast reporting, which allows for super-efficient planning, even for unexpected events. Overall, the use of warehouse management systems complements the use of other automated aspects perfectly.


Automated Picking Tools

The days of error-prone picking are long gone; now, when picking automation elements are integrated into the flow, warehouses can profit from near-perfect picking rates. In addition, picking procedures can be aided by various techniques, including voice-automated order picking, pick-to-light, and robotic order picking. These technologies also use cutting-edge barcoding choices that easily interface with your selected management software to provide the quickest and most accurate automated reporting experiences.


Automated Guided Vehicles (AGVs)

AGVs, or automatic guided vehicles, are the best approach to speeding up storage and retrieval processes. AGVs are becoming more robust as technology advances, but older models have proven safer and more cost-effective than manual labor. Their functions include pallet, rack, and other container storage and controlling and automating the entire receiving process.


Platforms for Automated Inventory Control

Automated inventory control platforms, when combined with a few other technological cornerstones, such as asset and inventory tags, may eliminate labor, guesswork, and unnecessary time from traditional inventory control. In addition, there are several advantages to using these platforms, including their ability to automatically count inventories and synthesize data for real-time reporting that can be viewed remotely.


IoT Implementation

The Internet of Things (IoT) is used by some of the world's most efficient smart warehouses, such as Amazon, as an entire concept rather than a specific technology. All of your automated and manual operations may be optimized when IoT is used to control all of your moving parts, both automated and manual. This innovative technology helps optimize a warehouse's inventory control systems, workforce planning, and, of course, the overall customer experience.

While implementing technology improves the notion of a smart warehouse, it isn't always possible for every warehouse to do so instantly, especially since implementing technology takes significant financial and infrastructure changes. That's why warehouses are adopting the concept of collaborative robots (cobots). These are the autonomous elements that work with existing human workers. Cobots allow warehouses to preserve many of their existing procedures and infrastructure while gaining the benefits of fully autonomous elements.


Amazon's Smart Warehouses Integrates Humans and Robots

Amazon acquired Kiva Systems for $775 million in 2012, highlighting its interest in warehouse robotics. Kiva Systems was the sole known producer of warehouse robots, serving many different logistics organizations.

Amazon bought Kiva Systems' machines, constructed and used them all. Amazon Robotics is a new business unit that the company has developed.

Amazon recently established a semi-automated warehouse with human workers and robots. As a result, simple chores like moving parcels and scanning barcodes are automated. However, organizing goods and carrying complex objects (like bottles) is still part of human work.

Amazon's automated warehouse employs over 400 robots and hundreds of human employees.

Amazon's rise in two crucial areas – online shopping and logistics – has been accelerated by warehouse robots.


Final Words

Modern warehousing is a new trend in the manufacturing industry that automates numerous procedures required for keeping manufacturing materials and products organized. Technology trends in warehousing are making manufacturers' jobs easier and promoting the future warehouse model in 2022. Implement the cutting-edge technology outlined above to stay current with warehousing trends and boost productivity, efficiency, accuracy, and flexibility for your personnel and their operations.


FAQ


What are the key benefits of a smart warehouse?

A smart warehouse improves the warehouse's productivity, efficiency, and accuracy. It also allows personnel and procedures to be flexible.


What exactly is WMS?

A warehouse management system (WMS) is a software solution that handles the supply chain from the distribution center to the retail shelf.


What is COBOT?

Cobots are designed to work with people rather than replace them. Cobots are also known as people-focused robots. They can help humans simplify and improve their work.

Spotlight

HLH Prototypes

HLH Prototypes Co Ltd (HLH Mold Technology Co Ltd) are one of China's leading manufacturers of prototypes, CNC machined parts and rapid injection mold tooling and parts. HLH has grown consistently over our 10-year history based on the tenements of quality and service. We are dedicated to providing our customers with what they require fast and on budget.

OTHER ARTICLES
Industrial 4.0

Best Practices for Successful Digital Transformation in Industry 4.0

Article | September 21, 2023

Navigating the path to success by unveiling the best practices for thriving in Industry 4.0 through successful digital transformation. Embrace the data-driven decision-making and customer-centricity. The pursuit of successful digital transformation has evolved from a business strategy to a business necessity. It is a vital imperative for organizations striving to survive and thrive in an ever-competitive market. Within this paradigm shift, a journey unfolds that transcends the commonplace and ventures into the realms of strategic innovation. This best practices article is not just a standard guide but a roadmap to excellence. Explore the best practices that propel businesses into the forefront of Industry 4.0. Beyond the surface of technology adoption lies a deeper narrative, one of cultural transformation, stakeholder collaboration, and visionary leadership. Delve into the intricacies of data-driven decision-making, the agility that fuels progress, the relentless pursuit of knowledge, and the unwavering commitment to the customer experience. Each of these elements forms a crucial thread in the tapestry of successful digital transformation. Through compelling case studies and real-world examples, draw inspiration from industry leaders who have not merely embraced change but have harnessed it to redefine their future. 1. Make confident decisions with Digital Twin Combining the physical and digital realms enables seamless integration of the entire value chain, from design to production, while optimizing with continuous data flow. A digital enterprise can harness the limitless power of data by obtaining valuable insights to make quick and confident decisions and to produce best-in-class products through efficient production. The Digital Twin approach integrates the entire product lifecycle with the factory and plant lifecycles and performance data. The end result is a continuous, open cycle of product and production optimization. The digital twin is a comprehensive digital representation of a product or process throughout its entire lifecycle. By creating a digital twin, companies can achieve significant value, such as faster time-to-market for new products, improved operational efficiency, reduced defects, and exploring new business models to drive revenue growth. With the digital twin, companies solve physical issues more efficiently by detecting them early on and accurately predicting outcomes. It empowers them to design and build superior products and ultimately enhance customer satisfaction by better serving their needs. By adopting smart architecture design, companies can continuously realize iterative value and benefits at an accelerated pace. Manufacturing, automotive, aviation, and other industries have adopted digital twins to boost productivity and efficiency. By 2025, the manufacturing industry is predicted to reach a market size worth over six billion U.S. dollars. 2. Vertically Network Various Units in Enterprise Vertical integration in a Digital Enterprise involves the convergence of IT and OT (Information Technology and Operational Technology) to enable seamless data flow from the shop floor to the top floor. The vast amount of data generated by field devices and control units on the shop floor is vital in the context of Industry 4.0, where intelligent data utilization and communication are paramount. Vertical integration generates a comprehensive solution by integrating IT systems at various hierarchical manufacturing and production levels. These hierarchical levels include the field level (interface with the production process via sensors), the control level (machine and system regulation), the production process level (to be monitored and controlled), the operations level (production planning and quality management), and the enterprise planning level. Vertical integration allows for improved communication and collaboration across different departments within the organization. This leads to better coordination, streamlined operations, and increased efficiency across the entire manufacturing ecosystem. A study by the Boston Consulting Group found that companies with a high level of vertical integration were 16% more productive than those with a low level of vertical integration. 3. Horizontally Integrate the Processes in Lifecycle The concept of horizontal integration in a Digital Enterprise ensures smooth data flow throughout the entire value chain. This integrated approach enables the digitalization of the complete value chain, spanning from design and production to service and recycling. By establishing seamless horizontal integration, it eliminates information silos and creates connections that encompass all aspects, from product innovation and manufacturing to product usage and beyond. Horizontally integrated companies focus on their core strengths and partner to support the value chain. Horizontal integration helps information flow between plant-level Manufacturing Execution Systems (MESs) when a company's manufacturing sites are spread out. This allows production sites to quickly share manufacturing data, such as unexpected delays, breakdowns, and inventory levels. Automated cooperation is crucial to supply chain integration in both the upstream (production processes and downstream (the process of bringing the finished products to market) supply and logistics chains. The integration lets a corporation automatically switch production duties between locations. A study byMcKinseyfound that companies that engaged in horizontal integration in the digital age saw their market share increase by an average of 10%. 4. Upgrade Digitalization using Automation Automation catalyzes growth by streamlining operations, breaking down silos, and promoting cross-functional collaboration. With reduced errors and increased efficiency, businesses can scale their operations with fewer resources, fostering a climate of innovation. This increased productivity allows employees to focus on more creative and challenging tasks, leading to higher motivation and engagement. Furthermore, automation provides a better customer experience, essential in today's digital-savvy market. By automating processes, businesses ensure quick access to customer information, leading to increased satisfaction. Lowering costs and expenditures is another significance enabling businesses to eliminate waste, save time, and conserve resources by automating data entry, approval workflows, and financial procedures. Additionally, automation enables efficient management of decentralized global teams from a central hub, further contributing to cost savings. Automation aids in enhancing security measures and simplifying compliance procedures. Businesses proactively identify vulnerabilities and ensure compliance with ever-changing regulations by automating data-intensive tasks. 97% of IT managers feel process automation is necessary for digital transformation. 5. Implement Additive Manufacturing The adoption of Additive Manufacturing (AM)technologies has prompted the evolution of innovative business models that emphasize environmental perspectives. AM has emerged as a transformative solution within the smart manufacturing industry, offering numerous advantages, such as improved labor, energy, and material optimization, enabling companies to respond to changing market demands effectively. AM is particularly time-saving and cost-effective for small-batch complex geometries products, allowing for non-traditional mass customization and shortening the product development cycle. It encourages changes in sustainable business models, including integrating recycled materials, increasing component attributes, and enhancing product lifecycle. AM’s sustainable benefits have garnered significant attention, focusing on reducing waste, optimizing material consumption, and shortening supply chains. Using layer-by-layer production, AM is considered less wasteful than traditional subtractive methods. It also facilitates the creation of products with extended lifecycles through repair, refurbishment, and remanufacturing, promoting sustainability and environmental responsibility. Study data estimates that the cost savings that can be achieved with Industry 4.0 transformations is 50%. 6. Choose the Appropriate Technology The success of digital transformation endeavors hinges on the careful selection of technologies to invest in. Avoid investing in the latest technology just for the sake of digitization, and refrain from rushing into numerous significant changes simultaneously, which may overwhelm employees. Instead, opt to gradually replace legacy systems and synchronize technology with business objectives through the implementation of new procedures. Here’s what Airbus did. Case Study: Airbus Airbus is the market leader in aeronautics and aerospace products and services worldwide. The organization needed a user-centric digital transformation solution to optimize its data analytics, technology, and machine learning tools, but this proved difficult. Later, it embraced open-source technology and consolidated its 15 tools onto a user-friendly platform. In ten months, this helped produce 290,000 visits and 2,200,000 page views. Additionally, the company's service center is now managing 30% fewer incidents. 7. Adapt Company for a Change Digital transformation does not demand extensive technical expertise from management and employees; rather, it necessitates a shift in mindset. By embracing this new mindset and leveraging technology solutions to automate processes for both customers and employees, rapid growth can be achieved within the organization as well as in the external market. To facilitate this transformation, it is essential to identify areas that require change, enhance transparency, and foster a culture of collaboration within the organization. By taking these steps, an organization can effectively prepare for the changes brought about by digital transformation. Case Study: Honeywell The Fortune 100 manufacturer operates in industries such as aerospace and building technology. To improve product quality and make it easier to apply digital strategies, it cut its operations from eight markets to six. Early in its transformation journey, it established a digital transformation group in the company that led digital innovations like data-driven product offerings, IoT-connected devices, and advanced industrial process control. Honeywell Intelligent Wearables eliminated the need for expert site visits, empowered workers to continue learning, improved their performance, and effectively shared their knowledge with peers by connecting field workers with remote advice. In 2018, Honeywell's share price grew from $95 to $174, and revenue went from $40 billion to $43 billion. 8. Integrate Digital Transformation into Business Goals Establish a strong connection between the digital transformation journey and the company's goals. Define the specific achievements to accomplish through digitization efforts. By aligning digital transformation initiatives with business objectives, a company can enhance its effectiveness in completing tasks, retaining existing employees, attracting new talent, and successfully overhauling company culture. Case Study: Cummins Cummins, a manufacturer of diesel and alternative fuel engines and generators is an example of a company that has capitalized on the increased demand for environmentally friendly products. Microsoft cloud compliance opportunities boost data security and IP protection. Microsoft has been one of the world's foremost technology companies for decades. Satya Nadella shifted the company's revenue model away from desktops and accelerated the transition to cloud computing. Cummins now uses Microsoft 365 for information management and collaboration to create a new workplace culture. Cummins' 58000 employees work cross-functionally and globally to stay ahead. Cummins relies on Microsoft 365 for strict security, data management and delivery, and compliance. Final Thoughts Successful digital transformation in Industry 4.0 requires a strategic and holistic approach beyond technology adoption. It demands a cultural shift, stakeholder collaboration, and a clear vision of the desired outcomes. To achieve successful digital transformation in Industry 4.0, organizations must adopt best practices that encompass technological, cultural, and strategic dimensions. Data-driven decision-making, agility, continuous learning, and a customer-centric approach are key elements in this transformative journey. By prioritizing these practices, businesses can navigate the complexities of digital transformation, drive innovation, and stay competitive in the dynamic landscape of Industry 4.0.

Read More

Achieving Interoperability in an Industry 4.0 Factory

Article | February 11, 2020

As a part of the Industry 4.0 movement, factory engineers are increasingly adopting some form of industrial Ethernet to interconnect the machines and other equipment implementing their production processes. Ethernet has been around in multiple forms for over 40 years. Most of it serves the IT community by interconnecting PCs and other equipment to a company LAN. Because of its flexibility, Ethernet has been adapted to many industrial uses.

Read More

The Impact of Coronavirus on Electronic Manufacturing

Article | February 11, 2020

Wuhan, the epicenter of the outbreak, is considered a crucial hub in the middle of China, a place of high importance for the production of automobiles, electronics, optics, and fiber optics. Wuhan and surrounding cities in the Hubei province are currently on a government-imposed quarantine at a scale the world has never seen before, some Chinese officials have referred to the situation as warlike.

Read More

Digitalizing Your Manufacturing Ecosystem

Article | February 10, 2020

Making digitalization work for you requires an understanding of your manufacturing ecosystem. Standards - such as ISA-95 - only guide you on a journey to more deeply comprehend the workings of your unique process for manufacturing your products. A batch manufacturing ecosystem often includes campaign management. Campaign management is not mentioned in ISA-95, which only speaks generally of order processing.

Read More

Spotlight

HLH Prototypes

HLH Prototypes Co Ltd (HLH Mold Technology Co Ltd) are one of China's leading manufacturers of prototypes, CNC machined parts and rapid injection mold tooling and parts. HLH has grown consistently over our 10-year history based on the tenements of quality and service. We are dedicated to providing our customers with what they require fast and on budget.

Related News

Manufacturing Technology

Stratasys’ Latest Printer Offers Applications with Improved Parameters

Stratasys | November 06, 2023

Stratasys introduces the F3300 3D printer, offering high speed, uptime, and quality for targeting manufacturing industries with high demands. The F3300 empowers manufacturers to accelerate product development and address global supply chain challenges, delivering a strong return on investment. The latest printer will be unveiled during a live event hosted by the company on November 7. Stratasys, a leader in additive manufacturing and polymer 3D printing solutions will showcase its latest F3300 Fused Deposition Modeling (FDM) 3D printer at the Formnext conference, held in Germany from November 7 to 10. This printer offers exceptional value to manufacturing customers with reduced labor, higher part quality and yield, as well as maximized uptime. The solutions provided by Stratasys provide customers a competitive edge at every stage of the product value chain. These solutions include smart and networked 3D printers, polymer materials, a software ecosystem, and components on demand. The most successful companies in the world go to Stratasys to improve health care, provide agility to manufacturing and supply chains, and alter product design. Key Advancements Faster Print Speeds: Increased gantry speeds, speedier extrusion rates, and autocalibration. Higher Part Quality and Yields: Up to 25% improvement in accuracy and repeatability with autocalibration. Maximized Uptime: Machine monitoring, extruder redundancy, and an operator-friendly interface design. Cost Savings: Offers 25-45% savings compared to other Stratasys FDM solutions. Rich Garrity, Stratasys' Chief Industrial Business Unit Officer, remarked that the next-generation AM system empowers customers to scale production and reduce the need to compromise between traditional and additive manufacturing solutions. He added that the conventional capacity limitations, rising global supply chain challenges, and application complexity are incredibly stressful for manufacturing, and F3300 will empower buyers to accelerate product development, allowing faster innovation and maximized ROI. F3300 printer expands the range of production capabilities and provides performance-oriented manufacturers with the most expansive variety of best-in-class FDM printers. The F3300 is the latest addition to the FDM family, which includes the F900, F770, F450mc, and the F123 series. F3300 complements Stratasys’ F900, known for its dependability, use of high-performance materials, and large capacity. Built for manufacturing by the inventors, the F3300 will be the most sophisticated industrial 3D printer in the market. Its advanced features and design will transform how additive manufacturing is used in demanding industries like automotive, government/military, aerospace and service bureaus. The F3300 is expected to be available for shipment from 2024. Stratasys will host a live event on November 7 at 5:30 p.m. CET to uncover the F3300.

Read More

Manufacturing Technology

Rockwell Automation Invests in Momenta Fund for Sustainable Tech

Rockwell Automation | November 08, 2023

Rockwell Automation invests strategically in Momenta's Industry 5.0 Fund, focused on resilient, sustainable, and human-centric industrial operations. The Industry 5.0 Fund promotes a transition from shareholder to stakeholder value, emphasizing sustainability and empowering individuals with technology to make informed decisions. This partnership positions Rockwell Automation to gain early access to innovative technologies that have the potential to disrupt industrial markets and enhance sustainability while supporting startups at the forefront of digital transformation in energy, manufacturing, smart spaces, and supply chains. Rockwell Automation, a global leader in industrial automation and digital transformation, has made a strategic investment in Momenta's Industry 5.0 Fund. The Industry 5.0 Fund, with an initial capital of $100 million, supports startups dedicated to advancing resilient, sustainable, and human-centric industrial operations. Switzerland-based Momenta launched the fund in cooperation with the EU Commission to promote research and innovation in line with the Commission's Industry 5.0 initiative. The fund aims to transition industries to focus on stakeholder value over shareholder value, emphasizing sustainability and empowering people with information and technology for decision-making. Targeting entrepreneurs in Europe and North America who are at the early stages of development and are at the forefront of the digital revolution in energy, manufacturing, smart spaces, and supply chains, the Industry 5.0 Fund will provide them with venture capital funding and direct value creation. Rockwell Automation is an anchor investor in the fund, allowing the company early access to cutting-edge technologies that can disrupt industrial markets and enhance sustainability. The investment aligns with Rockwell's strategy for inorganic growth and provides valuable insights into next-generation technologies driving digital transformation. Cyril Perducat, Senior Vice President and Chief Technology Officer of Rockwell, expressed excitement about partnering with Momenta to support startups poised to disrupt the industry while expanding human potential. He emphasized the intrinsic benefits of adopting technology that benefits all stakeholders. Ken Forster, a founding partner at Momenta, expressed his appreciation for Rockwell Automation's investment in their Industry 5.0 fund. He acknowledged that Rockwell Automation played a defining role in industrial automation and digital transformation within North America. Under the leadership of an impressive team, they had also been extending their global influence. Ken noted that Momenta's primary focus for the past decade had been investing in companies that drive industrial impact. He further mentioned that they couldn't have found a better partner for the Industry 5.0 fund than Rockwell Automation.

Read More

3D Printing

BizLink counts on Rapid Prototyping with the help of 3D printing technology

PR Newswire | November 03, 2023

BizLink, a leading provider of connectivity solutions worldwide, uses a method for creating physical prototypes with computer-aided design (CAD) data. This so called 'Rapid Prototyping' enables development times to be shortened, costs to be lowered and innovative ideas to be realised more quickly. BizLink's Automation & Drives business unit will showcase one of these solutions at the sps trade fair in Nuremberg, Southern Germany, which takes place from 14 to 16 November. In the development and production of individual injection moulded parts, a large part of the cost and time is spent on providing the appropriate tools. That is why BizLink uses Rapid Prototyping for sample parts in the development phase of overmoulded connection components. The principal objective of this technology involves testing and validating design concepts, functionality and features before there is any investment in series production. Through Rapid Prototyping, BizLink thus reduces development costs and time-to-market for overmoulded components and its reinforced innovative cable systems for factory automation. Rapid Prototyping involves applying layer upon layer of materials or bonding them to one another with 3D printing to make the desired object. This makes it possible to quickly adapt the design as changes can easily be made in the CAD data and the prototype can then be reprinted. It also allows, for example, the spatial conditions during fitting and operation under real-life conditions to be assessed, letting the findings thereby acquired be incorporated in product improvement before a tool-maker has even started his or her job. 3D printing technology can furthermore make valuable contributions to quality assurance while development is ongoing. If, for instance, parts being tested must be scrutinised to limit failure mechanisms along functional boundaries, it helps to be able to quickly create a matching testing device for such investigations. In some cases, such devices also facilitate good reproducibility, meaning that dependable component qualifications can also be carried out in this way. Other applications involve trialling numerous production resources and tools as well as handling aids that are, with respect to their function and ergonomics, initially tested as a 3D-printed specimen and improved repeatedly so that they can later be reproduced in a more robust version made of metal, for example. Rapid prototyping is versatile and has long been a proven tool for BizLink in the innovation process to bring new products to market faster and more effectively. Visitors to sps can convince themselves of these advantages through application examples in the Nuremberg exhibition halls from November 14 to 16, 2023 in Hall 2, Stand 431.

Read More

Manufacturing Technology

Stratasys’ Latest Printer Offers Applications with Improved Parameters

Stratasys | November 06, 2023

Stratasys introduces the F3300 3D printer, offering high speed, uptime, and quality for targeting manufacturing industries with high demands. The F3300 empowers manufacturers to accelerate product development and address global supply chain challenges, delivering a strong return on investment. The latest printer will be unveiled during a live event hosted by the company on November 7. Stratasys, a leader in additive manufacturing and polymer 3D printing solutions will showcase its latest F3300 Fused Deposition Modeling (FDM) 3D printer at the Formnext conference, held in Germany from November 7 to 10. This printer offers exceptional value to manufacturing customers with reduced labor, higher part quality and yield, as well as maximized uptime. The solutions provided by Stratasys provide customers a competitive edge at every stage of the product value chain. These solutions include smart and networked 3D printers, polymer materials, a software ecosystem, and components on demand. The most successful companies in the world go to Stratasys to improve health care, provide agility to manufacturing and supply chains, and alter product design. Key Advancements Faster Print Speeds: Increased gantry speeds, speedier extrusion rates, and autocalibration. Higher Part Quality and Yields: Up to 25% improvement in accuracy and repeatability with autocalibration. Maximized Uptime: Machine monitoring, extruder redundancy, and an operator-friendly interface design. Cost Savings: Offers 25-45% savings compared to other Stratasys FDM solutions. Rich Garrity, Stratasys' Chief Industrial Business Unit Officer, remarked that the next-generation AM system empowers customers to scale production and reduce the need to compromise between traditional and additive manufacturing solutions. He added that the conventional capacity limitations, rising global supply chain challenges, and application complexity are incredibly stressful for manufacturing, and F3300 will empower buyers to accelerate product development, allowing faster innovation and maximized ROI. F3300 printer expands the range of production capabilities and provides performance-oriented manufacturers with the most expansive variety of best-in-class FDM printers. The F3300 is the latest addition to the FDM family, which includes the F900, F770, F450mc, and the F123 series. F3300 complements Stratasys’ F900, known for its dependability, use of high-performance materials, and large capacity. Built for manufacturing by the inventors, the F3300 will be the most sophisticated industrial 3D printer in the market. Its advanced features and design will transform how additive manufacturing is used in demanding industries like automotive, government/military, aerospace and service bureaus. The F3300 is expected to be available for shipment from 2024. Stratasys will host a live event on November 7 at 5:30 p.m. CET to uncover the F3300.

Read More

Manufacturing Technology

Rockwell Automation Invests in Momenta Fund for Sustainable Tech

Rockwell Automation | November 08, 2023

Rockwell Automation invests strategically in Momenta's Industry 5.0 Fund, focused on resilient, sustainable, and human-centric industrial operations. The Industry 5.0 Fund promotes a transition from shareholder to stakeholder value, emphasizing sustainability and empowering individuals with technology to make informed decisions. This partnership positions Rockwell Automation to gain early access to innovative technologies that have the potential to disrupt industrial markets and enhance sustainability while supporting startups at the forefront of digital transformation in energy, manufacturing, smart spaces, and supply chains. Rockwell Automation, a global leader in industrial automation and digital transformation, has made a strategic investment in Momenta's Industry 5.0 Fund. The Industry 5.0 Fund, with an initial capital of $100 million, supports startups dedicated to advancing resilient, sustainable, and human-centric industrial operations. Switzerland-based Momenta launched the fund in cooperation with the EU Commission to promote research and innovation in line with the Commission's Industry 5.0 initiative. The fund aims to transition industries to focus on stakeholder value over shareholder value, emphasizing sustainability and empowering people with information and technology for decision-making. Targeting entrepreneurs in Europe and North America who are at the early stages of development and are at the forefront of the digital revolution in energy, manufacturing, smart spaces, and supply chains, the Industry 5.0 Fund will provide them with venture capital funding and direct value creation. Rockwell Automation is an anchor investor in the fund, allowing the company early access to cutting-edge technologies that can disrupt industrial markets and enhance sustainability. The investment aligns with Rockwell's strategy for inorganic growth and provides valuable insights into next-generation technologies driving digital transformation. Cyril Perducat, Senior Vice President and Chief Technology Officer of Rockwell, expressed excitement about partnering with Momenta to support startups poised to disrupt the industry while expanding human potential. He emphasized the intrinsic benefits of adopting technology that benefits all stakeholders. Ken Forster, a founding partner at Momenta, expressed his appreciation for Rockwell Automation's investment in their Industry 5.0 fund. He acknowledged that Rockwell Automation played a defining role in industrial automation and digital transformation within North America. Under the leadership of an impressive team, they had also been extending their global influence. Ken noted that Momenta's primary focus for the past decade had been investing in companies that drive industrial impact. He further mentioned that they couldn't have found a better partner for the Industry 5.0 fund than Rockwell Automation.

Read More

3D Printing

BizLink counts on Rapid Prototyping with the help of 3D printing technology

PR Newswire | November 03, 2023

BizLink, a leading provider of connectivity solutions worldwide, uses a method for creating physical prototypes with computer-aided design (CAD) data. This so called 'Rapid Prototyping' enables development times to be shortened, costs to be lowered and innovative ideas to be realised more quickly. BizLink's Automation & Drives business unit will showcase one of these solutions at the sps trade fair in Nuremberg, Southern Germany, which takes place from 14 to 16 November. In the development and production of individual injection moulded parts, a large part of the cost and time is spent on providing the appropriate tools. That is why BizLink uses Rapid Prototyping for sample parts in the development phase of overmoulded connection components. The principal objective of this technology involves testing and validating design concepts, functionality and features before there is any investment in series production. Through Rapid Prototyping, BizLink thus reduces development costs and time-to-market for overmoulded components and its reinforced innovative cable systems for factory automation. Rapid Prototyping involves applying layer upon layer of materials or bonding them to one another with 3D printing to make the desired object. This makes it possible to quickly adapt the design as changes can easily be made in the CAD data and the prototype can then be reprinted. It also allows, for example, the spatial conditions during fitting and operation under real-life conditions to be assessed, letting the findings thereby acquired be incorporated in product improvement before a tool-maker has even started his or her job. 3D printing technology can furthermore make valuable contributions to quality assurance while development is ongoing. If, for instance, parts being tested must be scrutinised to limit failure mechanisms along functional boundaries, it helps to be able to quickly create a matching testing device for such investigations. In some cases, such devices also facilitate good reproducibility, meaning that dependable component qualifications can also be carried out in this way. Other applications involve trialling numerous production resources and tools as well as handling aids that are, with respect to their function and ergonomics, initially tested as a 3D-printed specimen and improved repeatedly so that they can later be reproduced in a more robust version made of metal, for example. Rapid prototyping is versatile and has long been a proven tool for BizLink in the innovation process to bring new products to market faster and more effectively. Visitors to sps can convince themselves of these advantages through application examples in the Nuremberg exhibition halls from November 14 to 16, 2023 in Hall 2, Stand 431.

Read More

Events