Supply Chain 4.0 How emerging technologies are reconfiguring global supply chains

| February 28, 2020
SUPPLY CHAIN 4.0 HOW EMERGING TECHNOLOGIES ARE RECONFIGURING GLOBAL SUPPLY CHAINS
Emerging technologies are reconfiguring global supply chains. Witness the disruptive effects of additive manufacturing, a technology that has allowed companies to bring production from overseas to print customized products in local markets for local consumers. Artificial Intelligence and the predictive power of big data analytics enables companies to anticipate what customers will purchase, before they know themselves. Blockchain is enhancing transparency and traceability across multiple tiers of the supply chain, prompting companies to rethink their sourcing strategies when nefarious raw material extraction processes are identified.

Spotlight

Sullair Argentina

We offer solutions through machinery for industry, construction and services in general. We also provide power generation in different South American markets. Air compressors, generator sets, platforms for work at height, compact and telescopic manipulators, lighting towers and equipment for earth movement.

OTHER ARTICLES

4 Strategies to Make Your Production More Efficient in 2021

Article | July 13, 2021

The start of the new year is a great time to critically take a look at your processes and see how you can improve. Here at FANUC, we have identified four key strategies manufacturers can use to boost their efficiency! Add Automation Automation can increase production and efficiency no matter the type or complexity of the manufactured products. With space at a premium in most production facilities, many job shops look for machine tending robots that are easy to integrate and have a small footprint. FANUC's robots and software make it easy to connect the equipment and improve throughput as well as overall equipment effectiveness. Quick and Simple Startup of Robotization (QSSR) allows up to four machine tools to be connected with a robot using just one Ethernet cable. Use the Latest and Greatest Machining Practices and Technology Many manufacturers leave performance on the table due to outdated processes and programming. Are you getting the most out of your machining? Now’s the time to look at the advantages in new CNC technology. Because new controls have greater processing speed and can implement advanced algorithms, they can do a lot more for your operations. Moreover, the interfaces have become simpler and more intuitive, so they are easier to use than ever before. Digitize Your Process New digital tools are breathing innovation and life into increasingly more areas of manufacturing, including the application of digital twins in the machining industry. Digital twins provide virtualization of the machine, control and manufacturing process. Digitalizing traditional manufacturing processes have the potential to make operations more efficient by proving out production processes in the virtual world. That means less waste, more efficiency and a more equipped workforce. Upgrade Your Shop with a CNC Retrofit Do you have legacy equipment? Running older machinery can have hidden costs, such as taking the time to source and find older replacement controls leading to significantly longer total downtime and production losses. However, scrapping old equipment and starting new, might be too expensive, especially when factoring in tooling, fixturing, rigging and foundation. Plus, new machines may require more training for staff. A CNC retrofit, with new FANUC CNCs, industrial PCs, servos and cabling, can speed up processing and reduce cycle time by as much as 50 percent.

Read More

Reshoring and Technology Platforms Transforming Hiring Practices in the Manufacturing Sector

Article | March 31, 2021

Everyday the supply chain is jeopardized. A freighter stuck in the Suez Canal has severe ripple effects in raw material goods making their way around the world. Trade tariffs and unpredictable consequences from COVID have encouraged many US manufacturers to reshore bringing jobs stateside. This strategy will shift the supply chain challenge to a staffing challenge. As the manufacturing industry is poised for rapid growth over the next 24 months, hiring the best workers once again becomes the top challenge. As the workforce is vaccinated and reshoring the supply chain becomes a clarion call for industry, finding the right people with the right skills forces plant managers, operations managers, and HR managers to find new and innovative recruiting strategies. FactoryFix is an online platform that matches vetted manufacturing workers with companies seeking specific skill sets. This platform sets a new standard in how small to mid-sized manufacturers hire talent across the U.S.

Read More

Additive Manufacturing: A Ground-breaking Change to Empower Industry 4.0

Article | November 20, 2021

Advanced manufacturing enables the concept of industry 4.0 and represents a significant milestone in the manufacturing industry. Additive manufacturing is a critical component of the industry 4.0 concept, propelling the industry to new heights of innovation. In various fields that are not immediately related to industry 4.0 or manufacturing, additive manufacturing has alternatively been referred to as 3D printing. The numerous advantages of additive manufacturing, such as reduced cost and time, are boosting its popularity and use in manufacturing and other industries. “Digital technology is so empowering on so many fronts, but for it to be empowering, it must be for everyone.” – Michael Walton, Director, Industry Executive (Manufacturing) at Microsoft. The global market of additive manufacturing is anticipated to increase at a 14.42 percent compound annual growth rate from USD 9.52 billion in 2020 to USD 27.91 billion in 2025. According to this market research, the future of 3D printing or additive manufacturing is quite bright in the coming years, and we will see widespread application across industries. First, let us understand the idea of additive manufacturing and its benefits to various industries. Concept of Additive Manufacturing Additive manufacturing is building a real thing from a three-dimensional computer model, often by successively layering a material. This technique utilizes computer-aided design (CAD) software or 3D object scanners to command devices to deposit material in exact geometric shapes layer by layer. As the name implies, additive manufacturing involves the addition of material to produce an object. Additive Manufacturing Benefits Produces Fewer Scraps and Trash When we compare additive manufacturing to traditional manufacturing techniques such as milling or turning, additive manufacturing adds only the amount of material required to build a product. As a result, it generates less waste and conserves scarce resources. Reduces the Time and Cost of Prototyping Making a product prototype is now faster, easier, and cheaper. Other production processes, like milling, have high setup and material costs. Prototyping is less expensive and takes less time, so you can quickly produce, test, and modify. It also shows practically instant verification of progress done. It Encourages the Digitalization of Businesses Continuous and effective communication between devices, machines, and robots is required for additive manufacturing. However, this is only achievable with effective digitization of production processes. As a result, businesses invest more in digital and IoT, a prerequisite for Industry 4.0. It Simplifies the Assembling Process by Condensing it into a Single Component Additive manufacturing in Industry 4.0 also simplifies the production process, especially product assembly. A traditional component requires numerous manufacturing procedures. This increases material and labor expenses as well as production time. However, additive manufacturing allows you to print the group in one piece. The Top Three Industries That Make the Most Use of Additive Manufacturing Additive manufacturing is presently used in a variety of industries. However, specific sectors make the best use of it. Thus, we will examine the industries embracing additive manufacturing technology and emerging with new life easing solutions. Healthcare In the healthcare industry, dentistry is the critical application of additive manufacturing. Technology helps it create bridges, crowns, braces, and dentures, always in high demand. Additive manufacturing has also been used to create tissues and organs, surgical tools, patient-specific surgical models, and personalized prosthetics. For example, many medical equipment companies employ 3D printing to build patient-specific organ replicas that surgeons can practice before completing complex surgeries. Aerospace Additive manufacturing is utilized to fabricate metal brackets that serve as structural components within airplanes. Prototypes are increasingly being printed in three dimensions, allowing designers to fine-tune the shape and fit of finished parts. In addition, interior airplane components such as cockpit dashboards and door handles are manufactured using 3D printing services. Automotive 3D printing can manufacture molds and thermoforming tools, grips, jigs, and fixtures for the automotive industry. Automakers utilize additive printing to customize parts for specific vehicles or drivers (e.g., seats for racing cars). An appealing colored dashboard, efficient fuel systems, and complicated braking mechanisms are all possible with 3D printing in the automotive industry. Therefore, it is best suited for pre-production, manufacture, and modification of automotive parts. How Does NASA use additive manufacturing in its space projects? The space environment has always been unpredictable, and scientists must be adequately prepared before embarking on any space mission. They must consider the durability and weight of all the objects they propose to transport into space. To land any object on a planet that does not have a flat surface or similar weather conditions to earth, scientists must design each object with these considerations in mind. “You always want it to be as light as possible, but you also want it to be strong enough.” -Chris Chapman, NASA Test Engineer It is not conceivable to make items capable of dealing with all the changes on other planets and achieving these project objectives using conventional materials and production processes. However, scientists do require a technique that will enable them to manufacture lighter and stronger objects for their space missions. 3D printing has played a significant part in meeting this demand and has provided space projects to manufacture objects that would withstand any unexpected events during space missions. For example, NASA employed 3D-printed metal components in their Mars project. NASA's specialized engineers are utilizing additive manufacturing to create rocket engines and possible Moon and Mars outposts. NASA used the 11 3D printed metal components on its Mars mission as well. It employed 3D printed components for the first time in the Curiosity rover, which landed on Mars in 2012. It was a successful project, and NASA has since begun employing 3D printed parts in its space missions to make machines lighter while remaining robust and functional. Final Words Additive manufacturing technology is making a real difference in the manufacturing process, and it is becoming the trending technology in the manufacturing industry. The benefits of additive manufacturing make the manufacturing process more advanced, easy, and customer-oriented. Additive manufacturing is the major transformation in the manufacturing industry and will take it to new heights of precision. FAQ Why is additive manufacturing critical? Additive manufacturing reduces the time and cost of prototyping and reduces the scraps amount during the manufacturing process of any object. In addition, it simplifies multiple processes from various industries. Are additive manufacturing and 3D printing the same? Yes, additive manufacturing and 3D printing are the same processes with different names as per the choice of the different industries. For example, in some industries such as space missions, It is also referred to as Fused Deposition Modelling (FDM). Which is the most applied sector for additive manufacturing? Healthcare is the industry that utilizes additive manufacturing technology the most. It also helps medical practitioners practice surgery on any critical body part with its 3D printed model from human tissues. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "Why is additive manufacturing critical?", "acceptedAnswer": { "@type": "Answer", "text": "Additive manufacturing reduces the time and cost of prototyping and reduces the scraps amount during the manufacturing process of any object. In addition, it simplifies multiple processes from various industries." } },{ "@type": "Question", "name": "Are additive manufacturing and 3D printing the same?", "acceptedAnswer": { "@type": "Answer", "text": "Yes, additive manufacturing and 3D printing are the same processes with different names as per the choice of the different industries. For example, in some industries such as space missions, It is also referred to as Fused Deposition Modelling (FDM)." } },{ "@type": "Question", "name": "Which is the most applied sector for additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Healthcare is the industry that utilizes additive manufacturing technology the most. It also helps medical practitioners practice surgery on any critical body part with its 3D printed model from human tissues." } }] }

Read More

Technologies to Adopt Now to Enable the Smart Warehouse Concept

Article | December 8, 2021

Why should warehouses be left behind as everything gets smarter in the manufacturing world? The future warehouse will be smarter and more innovative to speed up supply chain management procedures and assist businesses in intelligently segregating their raw materials and manufactured goods. So, what does it mean to have "a smart warehouse"? A smart warehouse is a big infrastructure that stores raw materials and manufactured goods and employs machines and computers to handle routine warehouse tasks that humans previously performed. Smart warehouses are inspired by smart factories and operate in a data-driven environment. It is the ability of the system in the warehouse to make it more efficient and productive by utilizing networked, automated technology. “I advocate business leaders get to know more about what AI can do and then leverage AI in proofs of concept.” – Michael Walton, Director, Industry Executive (Manufacturing) at Microsoft According to EASYECOM, nine out of ten businesses intend to include commercial service robots into their operations in some form. By 2025, it is projected that there will be roughly 23,000 robotic warehouses in the United States alone, up from only 2,500 in 2018. Furthermore, the global smart warehousing market is expected to grow at a CAGR of 11.5 percent from USD 14.8 billion in 2021 to USD 25.4 billion in 2026, according to GlobeNewswire. As can be seen, the current warehouse automation trends are scaling up the worldwide market for smart warehouses, and the value of the smart warehouse business has a long way to go in the future. So, what are the technologies that are changing traditional warehouses into intelligent warehouses? Continue reading this article to get a better understanding of this. Top 5 Warehouse Technologies to Take On Numerous manufacturing and non-manufacturing organizations, including IKEA, NIKE, and WALMART, utilize smart warehouses to streamline their overall operations. The technologies listed below assist many of them in implementing the modern warehousing idea. A Warehouse Management System Warehouse Management Systems, or WMSs, are comprehensive software systems that consolidate all of your critical data onto a single platform that can be easily accessed by team members and selected supply chain partners. This data compartmentalization allows for lightning-fast reporting, which allows for super-efficient planning, even for unexpected events. Overall, the use of warehouse management systems complements the use of other automated aspects perfectly. Automated Picking Tools The days of error-prone picking are long gone; now, when picking automation elements are integrated into the flow, warehouses can profit from near-perfect picking rates. In addition, picking procedures can be aided by various techniques, including voice-automated order picking, pick-to-light, and robotic order picking. These technologies also use cutting-edge barcoding choices that easily interface with your selected management software to provide the quickest and most accurate automated reporting experiences. Automated Guided Vehicles (AGVs) AGVs, or automatic guided vehicles, are the best approach to speeding up storage and retrieval processes. AGVs are becoming more robust as technology advances, but older models have proven safer and more cost-effective than manual labor. Their functions include pallet, rack, and other container storage and controlling and automating the entire receiving process. Platforms for Automated Inventory Control Automated inventory control platforms, when combined with a few other technological cornerstones, such as asset and inventory tags, may eliminate labor, guesswork, and unnecessary time from traditional inventory control. In addition, there are several advantages to using these platforms, including their ability to automatically count inventories and synthesize data for real-time reporting that can be viewed remotely. IoT Implementation The Internet of Things (IoT) is used by some of the world's most efficient smart warehouses, such as Amazon, as an entire concept rather than a specific technology. All of your automated and manual operations may be optimized when IoT is used to control all of your moving parts, both automated and manual. This innovative technology helps optimize a warehouse's inventory control systems, workforce planning, and, of course, the overall customer experience. While implementing technology improves the notion of a smart warehouse, it isn't always possible for every warehouse to do so instantly, especially since implementing technology takes significant financial and infrastructure changes. That's why warehouses are adopting the concept of collaborative robots (cobots). These are the autonomous elements that work with existing human workers. Cobots allow warehouses to preserve many of their existing procedures and infrastructure while gaining the benefits of fully autonomous elements. Amazon's Smart Warehouses Integrates Humans and Robots Amazon acquired Kiva Systems for $775 million in 2012, highlighting its interest in warehouse robotics. Kiva Systems was the sole known producer of warehouse robots, serving many different logistics organizations. Amazon bought Kiva Systems' machines, constructed and used them all. Amazon Robotics is a new business unit that the company has developed. Amazon recently established a semi-automated warehouse with human workers and robots. As a result, simple chores like moving parcels and scanning barcodes are automated. However, organizing goods and carrying complex objects (like bottles) is still part of human work. Amazon's automated warehouse employs over 400 robots and hundreds of human employees. Amazon's rise in two crucial areas – online shopping and logistics – has been accelerated by warehouse robots. Final Words Modern warehousing is a new trend in the manufacturing industry that automates numerous procedures required for keeping manufacturing materials and products organized. Technology trends in warehousing are making manufacturers' jobs easier and promoting the future warehouse model in 2022. Implement the cutting-edge technology outlined above to stay current with warehousing trends and boost productivity, efficiency, accuracy, and flexibility for your personnel and their operations. FAQ What are the key benefits of a smart warehouse? A smart warehouse improves the warehouse's productivity, efficiency, and accuracy. It also allows personnel and procedures to be flexible. What exactly is WMS? A warehouse management system (WMS) is a software solution that handles the supply chain from the distribution center to the retail shelf. What is COBOT? Cobots are designed to work with people rather than replace them. Cobots are also known as people-focused robots. They can help humans simplify and improve their work. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What are the key benefits of a smart warehouse?", "acceptedAnswer": { "@type": "Answer", "text": "A smart warehouse improves the warehouse's productivity, efficiency, and accuracy. It also allows personnel and procedures to be flexible." } },{ "@type": "Question", "name": "What exactly is WMS?", "acceptedAnswer": { "@type": "Answer", "text": "A warehouse management system (WMS) is a software solution that handles the supply chain from the distribution center to the retail shelf." } },{ "@type": "Question", "name": "What is COBOT?", "acceptedAnswer": { "@type": "Answer", "text": "Cobots are designed to work with people rather than replace them. Cobots are also known as people-focused robots. They can help humans simplify and improve their work." } }] }

Read More

Spotlight

Sullair Argentina

We offer solutions through machinery for industry, construction and services in general. We also provide power generation in different South American markets. Air compressors, generator sets, platforms for work at height, compact and telescopic manipulators, lighting towers and equipment for earth movement.

Events