Smithsonian 3D Prints Neil Armstrong

KERRY STEVENSON| June 26, 2019
SMITHSONIAN 3D PRINTS NEIL ARMSTRONG
The Smithsonian Institution is 3D printing life-size copies of Neil Armstrong. Well, actually they are 3D printing his spacesuit, you know, the one that was ON THE MOON. Yes, this organization has plenty of incredible artifacts in their seemingly limitless warehouse, and one of them is Armstrongs suit.

Spotlight

Addimen Bizkaia

Addimen is a company incorporated in May 2014 that focuses its activity on the design and manufacture of functional metal components for various sectors through additive manufacturing. Our motivation is to be a reference within the field of additive manufacturing, proposing innovative solutions for the design and manufacture of metal parts with complex structures and geometries.

OTHER ARTICLES

Scaling, Optimizing & Pivoting with Smart Manufacturing Industry 4.0

Article | January 20, 2022

A smart factory that leverages Industry 4.0 concepts to elevate its operations has long been a model for other industries that are still figuring out how to travel the digital manufacturing route. Smart manufacturing technology is all you need to know if you're looking to cash in on this trend. “Industry 4.0 is not really a revolution. It’s more of an evolution.” – Christian Kubis In this article, we'll look at the advantages that many smart factory pioneers are getting from their smart factories. In addition, we will look at the top smart factory examples and understand how they applied the Industry 4.0 idea and excelled in their smart manufacturing adoption. Industry 4.0 Technology Benefits Manufacturing Industry 4.0 has several benefits that can alter the operations of manufacturers. Beyond optimization and automation, smart manufacturing Industry 4.0 aims to uncover new business prospects and models by increasing the efficiency, speed, and customer focus of manufacturing and associated industries. Key benefits of Manufacturing Industry 4.0 in production include: Improved productivity and efficiency Increased collaboration and knowledge sharing Better agility and adaptability Facilitates compliance Improved customer experience Reduced costs and increased profitability Creates opportunities for innovation Increased revenues World Smart Factory Case Studies and Lessons to Be Learned Schneider Electric, France SAS Schneider Electric's le Vaudreuil plant is a prime example of a smart factory Industry 4.0, having been regarded as one of the most modern manufacturing facilities in the world, utilizing Fourth Industrial Revolution technologies on a large scale. The factory has included cutting-edge digital technology, such as the EcoStruxureTM Augmented Operator Advisor, which enables operators to use augmented reality to accelerate operation and maintenance, resulting in a 2–7% increase in productivity. EcoStruxureTM Resource Advisor's initial deployment saves up to 30% on energy and contributes to long-term improvement. Johnson & Johnson DePuy Synthes, Ireland DePuy Synthes' medical device manufacturing plant, which started in 1997, just underwent a multimillion-dollar makeover to better integrate digitalization and Industry 4.0 smart manufacturing. Johnson & Johnson made a big investment in the Internet of Things. By linking equipment, the factory used IoT technology to create digital representations of physical assets (referred to as “digital twins”). These digital twins resulted in sophisticated machine insights. As a result of these insights, the company was able to reduce operating expenditures while simultaneously reducing machine downtime. Bosch, China Bosch's Wuxi factory's digital transformation uses IIoT and big data. The company integrates its systems to keep track of the whole production process at its facilities. Embedding sensors in production machinery collects data on machine status and cycle time. When data is collected, complicated data analytics tools analyze it in real-time and alert workers to production bottlenecks. This strategy helps forecast equipment failures and allows the organization to arrange maintenance ahead of time. As a consequence, the manufacturer's equipment may run for longer. The Tesla Gigafactory, Germany According to Tesla, the Berlin Gigafactory is the world's most advanced high-volume electric vehicle production plant. On a 300-hectare facility in Grünheide, it produces batteries, powertrains, and cars, starting with the Model Y and Model 3. For Tesla, the goal is not merely to make a smart car, but also to construct a smart factory. The plant's photographs reveal an Industry 4.0 smart factory with solar panels on the roof, resulting in a more sustainable production method. On its official website, Tesla claimed to use cutting-edge casting methods and a highly efficient body shop to improve car safety. Tesla's relentless pursuit of manufacturing efficiency has allowed them to revolutionize the car industry. Haier, China The SmartFactoryKL was established to pave the way for the future's "intelligent factory." It is the world's first manufacturer-independent Industry 4.0 production facility, demonstrating the value of high-quality, flexible manufacturing and the effectiveness with which it can be deployed. The last four years, SmartFactoryKL has been guided by particular strategic objectives that drive innovation; the aim is to see artificial intelligence integrated into production. Two instances of AI-driven transformations include an "order-to-make' mass customization platform and a remote AI-enabled, intelligent service cloud platform that anticipates maintenance needs before they occur. Final Words Enabling smart manufacturing means using the latest technology to improve processes and products. The aforementioned smart factory examples are industry leaders and are thriving by implementing Industry 4.0 technology. Small and medium-sized enterprises (SMEs) may use these smart factory examples to learn about the adoption process, challenges, and solutions. Industry 4.0 is aimed at improving enterprises and minimizing human effort in general. So adopt the smart factory concept and be productive. FAQ What is the difference between a smart factory and a digital factory? The digital factory enables the planning of factories using virtual reality and models, whereas the smart factory enables the operation and optimization of factories in real time. Where does Industry 4.0 come from? The term "Industry 4.0" was coined in Germany to represent data-driven, AI-powered, networked "smart factories" as the fourth industrial revolution's forerunner.

Read More

Top Electronics Manufacturing Trends to Watch in 2022

Article | October 13, 2021

The electronics manufacturing business is adopting new technologies to create smart electronics manufacturing products for its consumer base. Next-generation technologies are shaping the future of the manufacturing industry by enabling it to create technologically advanced and user-friendly products. Matt Mong, one of the manufacturing industry's leading professionals, stated in an interview with Media7, “Be Different. Don’t position your product in an existing category. Instead, create your category and make the competition irrelevant and obsolete.” – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca. The year 2022 will be a year of advancement and development for the electronics manufacturing industry. So, manufacturers are eager to embrace new technologies and produce more innovative, more user-friendly goods that become part of consumers' daily lives and meet their needs. To make the manufacturing process manageable and deliver advanced products, we will look at the top five trends flourishing in the electronics manufacturing industry. Top Five Electronics Manufacturing Industry Trends Future manufacturing technologies are transforming the electronics manufacturing industry's processes and products. Let's look at the top electronics manufacturing industry trends for 2022, which will propel the sector to new heights of technological advancement. Utilizing the Benefits of the Internet of Things The Internet of Things is being used in both the manufacturing process and the products themselves. It enables electronic manufacturing products and processes to become more intelligent and performance-driven to fulfill business and customer needs. In electronics manufacturing, the Internet of Things (IoT) enables businesses to solve common production challenges such as product quality issues, changing demands, and a complex global supply chain. As a result, it increases productivity and efficiency while reducing human effort. Industrial units may gather and analyze real-time data and processes using IoT-based sensor systems. Additionally, it assists organizations in managing data and transforms traditional manufacturing into an intelligent manufacturing unit. Using an ERP System to Maintain the Company's Competitive Edge ERP (Enterprise Resource Planning) is a centralized management system for all operational and business activities. The software automates all manufacturing processes and enables the electronics manufacturing sector to achieve higher precision throughout the manufacturing process and product delivery. ERP has the potential to boost productivity, improve efficiency, decrease expenses, and increase profitability. ERP enables electronics manufacturers to forecast, plan, modify, and respond to changing market demands. By using an ERP system in your manufacturing unit, you may expand your business and increase revenue. Making Use of Big Data The electronics manufacturing industry benefits from the use of big data to make critical business decisions. It aids in the integration of previously isolated systems to provide a comprehensive view of industrial processes. It also automates data gathering and processing, allowing for more excellent knowledge of each system individually and collectively. Big data also assists manufacturers in discovering new information and identifying trends, allowing them to optimize operations, improve supply chain efficiency, and find variables that impact manufacturing quality, volume, or consistency. In addition, big data assists the electronics manufacturing industry in keeping up with the rapidly changing digital world. Using AR and VR to Create Consumer-friendly Goods AR and VR are future manufacturing technologies that are changing electronics manufacturing products and driving growth. Robotics is a crucial usage of virtual reality in electronics production. Manufacturers may use powerful virtual reality software to design goods. This implementation of virtual reality software reduces production errors and saves time and money. AR in electronics manufacturing allows product developers to generate interactive 3D views of new products before production. AR and VR are part of Industry 4.0, the digital revolution of conventional electronics production units. Adoption of 3D Printing on a Wide Scale One of the essential advantages of today's electronics 3D printing is that companies can quickly prototype PCBs and other electrical devices in-house. In addition, 3D printing has simplified the electronics manufacturing process, and it is currently being utilized to manufacture multilayer printed circuit boards. It uses material jetting technology to spray conductive and insulating inks onto the printing surface. Let's look at an example of an analogy that worked for Jinzhenyuan - The Electronic Technology Co. Ltd., managed by Mr. Huang Runyuan, Jinzhenyuan's General Manager, and based on the concept of Industry 4.0. (Reference: Forbes) Jinzhenyuan - The Electronic Technology Co. Ltd. Takes a Significant Step Forward with Industry 4.0 Jinzhenyuan - The Electronic Technology Co. Ltd., formed in 2012, sells its products globally. In addition, it manufactures cellphones, computers, cars, and a variety of other consumer electronics. Due to changing market needs, the firm planned to upgrade its production facility to industry 4.0 by the end of 2017 to participate in smart manufacturing. The company increased production efficiency, shortened production cycles, and cut costs due to the digital revolution. Today, Jinzhenyuan is regarded as a model of digital transformation in the community in which it works. Let’s observe the statistics for Jinzhenyuan following the deployment of Industry 4.0. 32% improvement in total production efficiency 33% cost reduction 41% decrease in R&D to production cycles 51% reduction in substandard parts rate – from 3,000 to 1,500 per million Final Words The electronics manufacturing sector is on the verge of a digital revolution that will improve the production process efficiency and cost-effectiveness. Many of the world's biggest firms, like Apple, Microsoft, Hitachi, and Saline lectronics, are developing future agile factories to keep up with the world's digital transformation. Future manufacturing technology will help your manufacturing company make the manufacturing process more efficient and boost the business revenue. FAQs What are the future electronics technologies? Smart grid solutions, wearable technology devices, prefabricated goods, the Internet of Things, and robots are some of the future electronics innovations that will propel the business forward. Is the supply chain benefiting from new technology trends? Yes, supply chain management benefits from smart technology as well. Trucks equipped with cutting-edge technologies can get real-time data on the weather and road conditions ahead of time. It contributes to the supply chain process's reduction of possible risks. Which manufacturers are implementing the industry 4.0 concept in their factories? Whirlpool, Siemens, Hirotec, Tesla, Bosch, and Ocado, among others, have turned their traditional factories into digitally smart ones that incorporate all of the cutting-edge technology necessary to improve and optimize the production process. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What are the future electronics technologies?", "acceptedAnswer": { "@type": "Answer", "text": "Smart grid solutions, wearable technology devices, prefabricated goods, the Internet of Things, and robots are some of the future electronics innovations that will propel the business forward." } },{ "@type": "Question", "name": "Is the supply chain benefiting from new technology trends?", "acceptedAnswer": { "@type": "Answer", "text": "Yes, supply chain management benefits from smart technology as well. Trucks equipped with cutting-edge technologies can get real-time data on the weather and road conditions ahead of time. It contributes to the supply chain process's reduction of possible risks." } },{ "@type": "Question", "name": "Which manufacturers are implementing the industry 4.0 concept in their factories?", "acceptedAnswer": { "@type": "Answer", "text": "Whirlpool, Siemens, Hirotec, Tesla, Bosch, and Ocado, among others, have turned their traditional factories into digitally smart ones that incorporate all of the cutting-edge technology necessary to improve and optimize the production process." } }] }

Read More

Rex Moore Proves Project Business Automation Provides Predictive and Proactive Resource Requirements

Article | July 28, 2021

Rex Moore Group, Inc. is a Top50 electrical contractor delivering unmatched integrated electrical solutions. As an early adopter of Lean manufacturing principles, Rex Moore has created a company-wide culture of continuous improvement that drives significant value to their clients. The firm contracts and performs both design/build and bid work for all electrical, telecommunications, and integrated systems market segments. Rex Moore has a full-service maintenance department to cover emergency and routine requirements for all facilities, whether an existing facility or one that has been recently completed by the company. The ability to negotiate and competitively bid various forms of contracts including lump-sum, fixed fee, hourly rate, and cost-plus work as a prime contractor, subcontractor, or joint venture is enhanced with Project Business Automation (PBA) from Adeaca. This solution permits the company to propose work only if they are in a position to be competitive in the marketplace and provide excellent service with fair compensation. Rex Moore used Adeaca PBA as a construction management software for builders and contractors to integrate and facilitate its business processes in its ERP system. Together with Microsoft Dynamics, PBA integrated processes across the company on a single end-to-end platform. This allowed the company to replace 15 different applications with a single comprehensive system, eliminating the costs and inefficiencies associated with multiple systems and silos of information.

Read More

Computer Aided Manufacturing (CAM): Major Challenges and Their Solutions

Article | December 16, 2021

Computer-aided manufacturing (CAM) is a technology that revolutionized the manufacturing business. Pierre Bézier, a Renault engineer, produced the world's first real 3D CAD/CAM application, UNISURF CAD. His game-changing program redefined the product design process and profoundly altered the design and manufacturing industries. So, what is CAM in its most basic definition? Computer-aided manufacturing (CAM) is the application of computer systems to the planning, control, and administration of manufacturing operations. This is accomplished by using either direct or indirect links between the computer and the manufacturing processes. In a nutshell, CAM provides greater manufacturing efficiency, accuracy, and consistency. As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity.” – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca In light of the numerous advantages and uses of computer-aided manufacturing, manufacturers have opted to use it extensively. The future of computer-aided manufacturing is brightening due to the rapid and rising adoption of CAM. According to Allied Market Research, the global computer-aided manufacturing market was worth $2,689 million in 2020 and is expected to reach $5,477 million by 2028, rising at an 8.4% compound annual growth rate between 2021 and 2028. Despite all this, each new development has benefits and challenges of its own. In this article, we'll discuss the benefits of CAM, the challenges that come with it, and how to deal with them. Let's start with the advantages of computer-aided manufacturing. Benefits of Computer Aided Manufacturing (CAM) There are significant benefits of using computer-aided manufacturing (CAM). CAM typically provides the following benefits: Increased component production speed Maximizes the utilization of a wide variety of manufacturing equipment Allows for the rapid and waste-free creation of prototypes Assists in optimizing NC programs for maximum productivity during machining Creates performance reports automatically As part of the manufacturing process, it integrates multiple systems and procedures. The advancement of CAD and CAM software provides visual representation and integration of modeling and testing applications. Greater precision and consistency, with similar components and products Less downtime due to computer-controlled devices High superiority in following intricate patterns like circuit board tracks Three Challenges in CAM and Their Solutions We have focused on the three primary challenges and their solutions that we have observed. Receiving Incomplete CAD Updates Receiving insufficient CAD updates is one of the challenges. If, for example, the part update from a CAD engineer does not include the pockets that are required in the assembly, to the CAM engineer. SOLUTION: A modeler that enables developers of a CAM programs to create intuitive processes for features such as feature extraction and duplication across CAD version updates. A modeler is capable of recognizing and extracting the pocket's architecture and the parameters that define it. Additionally, the CAM application can enable the engineer to reproduce the pocket in a few simple steps by exploiting the modeler's editing features such as scaling, filling, extruding, symmetrical patterning, and removing. Last Minute Design Updates The second major challenge is last-minute design changes may impact manufacturers as a result of simulation. SOLUTION: With 3D software components, you may create applications in which many simulation engineers can work together to make design modifications to the CAD at the same time, with the changes being automatically merged at the end. Challenging Human-driven CAM Manufacturing The third major challenge we have included is that CAM engineers must perform manual steps in human-driven CAM programming, which takes time and requires expert CAM software developers. Furthermore, when the structure of the target components grows more complicated, the associated costs and possibility of human failure rise. SOLUTION: Self-driving CAM is the best solution for this challenge. Machine-driven CAM programming, also known as self-driving CAM, provides an opportunity to improve this approach with a more automated solution. Preparing for CAM is simple with the self-driving CAM approach, and it can be done by untrained operators regardless of part complexity. The technology handles all of the necessary decisions for CAM programming operations automatically. In conclusion, self-driving CAM allows for efficient fabrication of bespoke parts, which can provide substantial value and potential for job shops and machine tool builders. Computer Aided Manufacturing Examples CAM is widely utilized in various sectors and has emerged as a dominant technology in the manufacturing and design industries. Here are two examples of sectors where CAM is employed efficiently and drives solutions to many challenges in the specific business. Textiles Virtual 3D prototype systems, such as Modaris 3D fit and Marvellous Designer, are already used by designers and manufacturers to visualize 2D blueprints into 3D virtual prototyping. Many other programs, such as Accumark V-stitcher and Optitex 3D runway, show the user a 3D simulation to show how a garment fits and how the cloth drapes to educate the customer better. Aerospace and Astronomy The James Webb Space Telescope's 18 hexagonal beryllium segments require the utmost level of precision, and CAM is providing it. Its primary mirror is 1.3 meters wide and 250 kilograms heavy, but machining and etching will reduce the weight by 92% to just 21 kilograms. FAQ What is the best software for CAM? Mastercam has been the most extensively utilized CAM software for 26 years in a row, according to CIMdata, an independent NC research business. How CAD-CAM helps manufacturers? Customers can send CAD files to manufacturers via CAD-CAM software. They can then build up the machining tool path and run simulations to calculate the machining cycle times. What is the difference between CAD and CAM? Computer-aided design (CAD) is the process of developing a design (drafting). CAM is the use of computers and software to guide machines to build something, usually a mass-produced part.

Read More

Spotlight

Addimen Bizkaia

Addimen is a company incorporated in May 2014 that focuses its activity on the design and manufacture of functional metal components for various sectors through additive manufacturing. Our motivation is to be a reference within the field of additive manufacturing, proposing innovative solutions for the design and manufacture of metal parts with complex structures and geometries.

Events