Sierra Leone 3D Prints Data For Educational Policy Decisions

SARAH GOEHRKE| July 05, 2019
SIERRA LEONE 3D PRINTS DATA FOR EDUCATIONAL POLICY DECISIONS
Education is a major issue around the world, and while we often hear about these from the perspective of curriculum or a focus on STEAM science, technology, engineering, arts, mathematics subjects, or even about preparing the next generation of the workforce with next-generation technologies, sometimes the issue is much more foundational: access.

Spotlight

GM Nameplate

Established in 1954, GM Nameplate is a leading international manufacturer specializing in the custom design and manufacture of product identification components including nameplates, decals, labels and custom panels; electronic input devices such as membrane switches, rubber keypads and touch screens; injection and compression molding; plastic decorating and large format digital graphics.

OTHER ARTICLES

The Future of Additive Manufacturing: Trends and Predictions

Article | January 21, 2022

3D printing technology and its role in future manufacturing are grabbing the interest of industry experts. In terms of elevating future products, future additive manufacturing has a lot to offer the business. Additive manufacturing is developing and stretching its wings on a daily basis, becoming an integral part of every industry, including manufacturing, healthcare, education, and more. In this article, we'll shed some light on the 3D printing future trends, which will assist the business in deepening its impact across industries. Furthermore, we will explore whether the additive manufacturing business is worth investing in as well as who the major players are that have already invested in the future of 3D printing. Future Trends in the Additive Manufacturing Industry Enhanced Machine Connectivity Making AM solutions (including software and hardware) easier to integrate and connect to the factory floor is one of the key AM trends we predict to advance in the coming years. It has been a long time since the AM hardware market has been filled with closed, or proprietary, systems. These systems generally function with materials and software given or approved by the machine OEM and are not easily integrated with third-party alternatives. Closed systems are important for process dependability, but they also restrict collaboration and connectivity. Companies expanding their AM operations will need to connect their machines and software to their production environments. When it comes to additive manufacturing, using siloed solutions is a surefire way to fail. Importantly, we see hardware manufacturers increasingly focusing on solutions that can be integrated with the production floor. For example, a 3D printing market leader like Stratasys is a good illustration of the trend. In December, the business announced an extension of its previously closed machines' connection.Consumers may now integrate and control their additive production using software programs of their choosing, not just Stratasys' systems. For AM facilities, system connectivity is no longer an option. It's exciting to see the AM industry players recognize and solve this requirement. AM and AI Continue to Converge AM growth is incorporating AI and machine learning. AI can help with material development, machine setup, part design, and workflow automation. So, in the future, we anticipate seeing more AI and AM technology integration. Combined with AM systems, AI will improve process control and accuracy. For example, Inkbit is currently working on an AI-powered polymer vision system. This technology can scan 3D printing layers and anticipate material behavior during printing. Generative design, already generally recognized as a key digital advance in AM, may tremendously benefit from AI and machine learning. It has so far been utilized to improve load routes when strength and stiffness are dominant. It can also be utilized to optimize thermal or vibration. AI and machine learning will advance generative design, allowing new concepts to be completely suited to AM.While we may be a few years away from fully developing the capacity to automatically adapt designs to process, we anticipate significant breakthroughs this year that will bring us closer. AM Will Drive Decentralization In order to future-proof their supply chains, many manufacturers are following new supply chain models and technology that allow them to cut prices or switch goods more easily. Increasing flexibility and agility will necessitate distributed, localized production, assisted by additive manufacturing.To reduce the number of steps required to manufacture complex metal or polymer structures, shorten lead times, and enable digital inventory management, digital inventory management can be automated. These advantages make it ideal for the distributed manufacturing model. We believe that in the near future, more businesses will actively explore distributed manufacturing with AM. According to a recent HP survey, 59% of organizations are now considering hybrid models, while 52% are looking into localized digital manufacturing. 3D Printing Future: Major Predictions In Jabil's 2021 3D printing trends survey of over 300 decision-makers, 62% of participants claim their organization is actively using additive manufacturing for production of their product components, up from 27% in 2017. Many such manufacturers are on the lookout for the latest additive manufacturing trends and forecasts. So let's begin. Increasing Flexibility and Customization Customized goods are a popular consumer trend, impacting several sectors. Rather than buying a mass-produced item, customers are increasingly demanding a custom-made item that meets their specific needs. Additive manufacturing's low-volume production capabilities simply enable personalization and customization. 3D printing allows for more responsive design options, particularly for additive manufacturing. Manufacturers can afford to make smaller batches, allowing designers and engineers to alter product ideas and develop them cost-effectively when inspiration strikes, the public mood is understood, or customer feedback drops in. Materials Drive the Future of Digital As the additive manufacturing ecosystem grows, the importance of materials cannot be overstated. Besides high equipment costs, materials and limited additive manufacturing ecosystems have hindered the 3D printing industry's growth. The market is flooded with 3D printing materials, but few are advanced enough to fulfill industry standards.Due to volume constraints in most sectors, suppliers and manufacturers aren't motivated to develop innovative materials for new uses. However, the future of 3D printing is in engineered and application-specific materials. Various sectors have unique difficulties that demand unique solutions. New designed materials will revolutionize new uses, including highly regulated sectors. Industries will reward those who can promptly introduce 3D printing materials adapted to specific industrial and engineering needs. This will allow more 3D printing applications to be supplied and the whole digital manufacturing flywheel to start spinning. 3D Printing and a Sustainable Future Finally, additive manufacturing promotes sustainability and conservation. Besides decreasing trash, 3D printing saves energy. The Metal Powder Industries Federation studied the difference between making truck gear using subtractive manufacturing (17 steps) and additive manufacturing (6 steps). 3D printing uses less than half the energy it takes to produce the same product. 3D printing also reduces the need for moving products and materials, reducing the amount of carbon emitted into the environment. So we can see that digital and additive solutions already contribute to a more sustainable future. Is Investment in the Future of Additive Manufacturing Worth It? In recent years, there has been an explosion of investment in industrial 3D printing. Hundreds of millions of dollars have flowed into the industry in recent years, assisting new businesses. Desktop Metal ($160 million), Markforged ($82 million), and 3D Hubs ($18 million) have all received significant funding in the past. According to a recent report and data analysis, the global additive manufacturing market will hit USD 26.68 billion by 2027. A rising level of government support for additive manufacturing across regions is driving market demand. For example, America Makes, the foremost national initiative in the US since 2012 dedicated to additive manufacturing (3D printing future technology), received USD 90 million in support from the government, commercial, and non-profit sectors. Given the industry's expenditures and the expanding need for 3D printing, investing in the additive manufacturing industry or 3D printing is certainly encouraged. Final Words Additive manufacturing is being used in practically every industry, and companies are researching how technology might be used in their specific fields. The numerous advantages and sustainability that 3D printing provides are the major benefits that manufacturers and other industry professionals notice with 3D printing.Future manufacturing will be significantly more accurate and simple to run thanks to 3D printing technologies. Considering the trends and projections listed above, you may have a better understanding of 3D printing's future and make an informed investment decision. FAQ What is the future of 3D printing? 3D printing, or additive manufacturing, has the potential to empower everything from food to coral reefs. 3D printers may soon be seen in homes, companies, disaster zones, and perhaps even outer space. Why is 3D printing important to society? 3D printing results in waste reduction and so eliminates the need for periodic waste reduction, reuse, and recycling. So it helps society with no carbon footprint. Why is it known as additive manufacturing? The term "additive manufacturing" refers to the fact that the building process adds layers rather than removes raw materials.

Read More

Top Five Industries That Are Leveraging Additive Manufacturing

Article | October 20, 2021

Additive manufacturing has advanced significantly in recent years and is currently used in nearly every area to improve both products and processes in the manufacturing business. As a result, manufacturers have been more imaginative and innovative in offering relevant products to their target customer group due to this technological advancement. Mr. Matt Mong, a prominent business executive, also mentioned in one of his Media7 interviews, As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity. Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca The use of additive technology provides several advantages, including creating unique shapes and low production costs. In addition, the increasing application of additive manufacturing technologies is accelerating the growth of the additive manufacturing market. According to recent research conducted by Metal AM, the value of additively produced components is expected to increase by 15% annually from $12 billion in 2020 to $51 billion in 2030. Thus, additive marketing is the way forward for all industries. This article will cover the top five industries that utilize additive manufacturing and are advancing their businesses every day by overcoming the prevailing challenges such as production errors, downtime, and skilled labor shortage with the benefits of additive manufacturing. Five Industries Utilizing Additive Manufacturing Though additive manufacturing or 3D printing has penetrated almost all the industries, we have picked up a few of the prevailing industries that have started using additive manufacturing and excelling in it. Additive Manufacturing in Aerospace Aerospace has always been the first sector to adopt new technology. Precision is critical in this sector, as a failure of any component is not an option in aerospace. In aircraft production, dimension, weight, and temperature tolerance are critical, and additive technology provides every solution around this. As a result, additive manufacturing has evolved into a critical technology that adds value throughout the supply chain for prominent aircraft firms like Airbus, GE, Boeing, and TTM. Additive Manufacturing in Healthcare Healthcare or medical is one of the industries that is maximizing the benefits of additive manufacturing. Technology enables the medical sector to be more innovative, accurate, and capable of offering the most excellent medical solutions available today. It enables medical practitioners to rehearse before procedures and medical researchers to study functioning human tissues for basic biological research. In addition, it is utilized to fabricate tissues and organoids, surgical instruments, patient-specific surgical models, and bespoke prostheses. Thus, additive technology has altered the face of medicine, elevating it to a more sophisticated and solution-oriented state. Additive Manufacturing in Architecture As with other industries, additive manufacturing reshapes the architectural and construction sectors by eliminating conventional industrial barriers such as production time and cost, material waste, and design constraints. By utilizing 3D printing, designers can now quickly construct and demonstrate how structural parts will function and appear when combined. It also assists designers in seeing how the plan will seem subsequent execution. Additive Manufacturing in Manufacturing Nowadays, additive manufacturing, or 3D printing, is a significant part of the manufacturing process. For example, rather than fabricating a product from solid blocks, additive manufacturing may build a three-dimensional model utilizing fine powder, various metals, polymers, and composite materials as raw materials for constructing a 3D model with a three-dimensional printer. Additive Manufacturing in Education Additive manufacturing is reshaping the educational industry by introducing a new teaching trend and transforming the classroom experience for students. It is being used in various disciplines, including engineering, architecture, medicine, graphic design, geography, history, and even chemistry. They may produce prototypes, three-dimensional models, and historical objects, among other things. Thus, technology enables learners to get more practical information about their respective courses directly on the floor. How has General Electric (GE) been pioneering the use of Additive Manufacturing for 20 years? GE's primary competency is additive manufacturing (3D printing), and the company has made significant investments in the technology. It utilizes additive technology to manufacture a range of components for aviation and other sectors. This article will look at one of their manufacturing case studies and how additive technology enabled them to get the desired result from the end product. CASE STUDY: OPTISYS Optisys modified a vast, multi-part antenna assembly into a palm-sized, lighter, one-piece additive metal antenna. The antenna's aluminum material was chosen because of its surface conductivity, low weight, corrosion resistance, and stress and vibration resistance. Optisys was able to break even on machine acquisition within one year after acquiring its first Direct Metal Laser Melting (DMLM) equipment by utilizing additive technologies. (Source: General Electric) Benefits and Outcomes Non-recurring expenditures were reduced by 75%. Weight loss of 95% The size was reduced by 80%. Part-to-part reduction of 100-to-1 Cycle duration shortened from 11 to 2 months 5 product lines were created for AM, a new market growth Final Words Additive manufacturing benefits a wide variety of businesses. Industries must recognize the advantages of additive manufacturing and begin using the technology in their manufacturing processes to cut production time and costs while increasing product accuracy. This game-changing expansion of the additive manufacturing market across several industries is upgrading both products and production processes. FAQs How do you define additive manufacturing? Additive manufacturing (AM), more generally referred to as 3D printing, is a ground-breaking manufacturing technique that enables the creation of lighter, more robust components and systems. As the name implies, additive manufacturing is adding material to an item to create it. Is additive manufacturing the same as 3D printing? Both terms are interchangeable. Additive manufacturing and 3D printing manufacture components by connecting or adding material from a CAD file. Which companies specialized in additive manufacturing? American Additive Manufacturing, Forecast 3D, Sciaky, Inc., 3 Axis Development, Inc., Jonco Industries, Inc., Polyhistor International, Inc., and Caelynx, LLC are renowned companies for additive manufacturing in the United States of America. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "How do you define additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Additive manufacturing (AM), more generally referred to as 3D printing, is a ground-breaking manufacturing technique that enables the creation of lighter, more robust components and systems. As the name implies, additive manufacturing is adding material to an item to create it." } },{ "@type": "Question", "name": "Is additive manufacturing the same as 3D printing?", "acceptedAnswer": { "@type": "Answer", "text": "Both terms are interchangeable. Additive manufacturing and 3D printing manufacture components by connecting or adding material from a CAD file." } },{ "@type": "Question", "name": "Which companies specialized in additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "American Additive Manufacturing, Forecast 3D, Sciaky, Inc., 3 Axis Development, Inc., Jonco Industries, Inc., Polyhistor International, Inc., and Caelynx, LLC are renowned companies for additive manufacturing in the United States of America." } }] }

Read More

This Is How You Can Lower Your Manufacturing Overhead

Article | December 21, 2021

When it comes to developing a budget for the following financial year of your manufacturing business, many operations managers start with direct labor and material expenditures. But, what about manufacturing overhead costs? Manufacturing overhead is any expense not directly tied to a factory's production. Therefore, the indirect costs in manufacturing overhead can also be called factory overhead or production overhead. Outsourcing and globalization of manufacturing allows companies to reduce costs, benefits consumers with lower-cost goods and services, and causes economic expansion that reduces unemployment and increases productivity and job creation. – Larry Elder So, this article focuses on some highly effective overhead cost reduction methods that would help you build a healthy budget for the following year. Manufacturing Overhead Costs: What Is Included? Everything or everyone within the factory that isn't actively producing items should be considered overhead. The following are some of the variables that are considered overhead costs: Depreciation of equipment and productionfacilities Taxes, insurance, and utilities Supervisors, maintenance, quality control, and other on-site personnel who aren't producing signs Indirect supply from light bulbs to toilet paper is also included in the overhead cost. Manufacturing Overhead Costs: What Is Excluded? Everything or everyone within or outside the factory that is actively producing items should be excluded from the overhead costs. Factory overhead does not include the following: Product materials Employee costs for those making the goods daily External administrative overhead, such as a satellite office or human resources Costs associated with C-suite employees Expenses associated with sales and marketing - include pay, travel, and advertising How to Calculate Overhead Costs in Manufacturing To know the manufacturing overhead requires calculating the manufacturing overhead rate. The formula to calculate the manufacturing overhead rate i.e. MOR is basic yet vital. To begin, determine your overall manufacturing overhead expenses. Then, add up all the monthly indirect expenditures that keep manufacturing running smoothly. Then you can calculate the Manufacturing Overhead Rate (MOR). This statistic shows you your monthly overhead costs as a percentage. To find this value, divide Total Manufacturing Overhead Cost (TMOC) by Total Monthly Sales (TMS) and multiply it by 100. The final formula will be: Assume your manufacturing overhead expensesare $50,000 and your monthly sales are $300,000. You get.167 when you divide $50,000 by $300,000. Then increase that by 100 to get your monthly overhead rate of 16.7%. This means your monthly overhead expenditures will be 16.7% of your monthly income. Being able to forecast and develop better solutions to decrease production overhead. Five Ways to Reduce Manufacturing Overhead Costs A variety of strategies may be used by manufacturing organizations to reduce their overhead costs. Here is a summary of some of the most important methods for reducing your manufacturing overhead costs. Value Stream Mapping – A Production Plant Process Layout A value stream map depicts the entire manufacturing process of your plant. Everything from raw material purchase through client delivery is detailed here. The value stream map provides you with a complete picture of the profit-making process. This overhead cost-cuttingmethod is listed first for a reason because every effort to reduce manufacturing overhead costsstarts with a value stream map. Lean manufacturingis also one of the techniques of eliminating unnecessary time, staff, and work that is not necessary for profit and has gained undue favor in the manufacturing process. You must first create a value stream map of the whole manufacturing process for this technique to work. Once the lean manufacturing precept is established, the following strategies for decreasingmanufacturing overhead expenses can be examined. Do Not Forget Your Back Office Management Before focusing on factory floor cost reduction techniques, remember that your back offices, where payment processing and customer contacts occur, may also be simplified and increase profitability. Fortunately, automation can achieve this profitability at a cheap cost. Manufacturers increasingly use robotic process automation (RPA) to sell directly to customers rather than rely on complex supply networks. This automation eliminates costly human mistakes in data input and payment processing by automatically filling forms with consumer data. Moreover, the time saved from manual data input (and rectifying inevitable human errors) equates to decreased labor expenses and downtime. Automating Your Manufacturing Plant For a long time, manufacturers saw factory automation as a game-changer. As a result, several plant owners make radical changes in their operations using cutting-edge technologydespite knowing it realistically. Over-investing in technologies unfamiliar to present industrial personnel might be deemed a technology blunder. Investing in new technology that doesn't generate value or is too hard for current staff to use might be a mistake. It's usually best to start small when implementing newtechnology in manufacturing. Using collaborative robots in production is one way to get started with automation. They are inexpensive, need little software and hardware, and may help employees with mundane, repeated chores that gobble up bandwidth. It is a low-cost entry point into automation that saves labor expenses and opens the door for further automation investments when opportunities are available. Reuse Other Factory Equipment and Supplies Check with other factories to see if they have any unused equipment or supplies that may be "redeployed" to your manufacturing plant. Redeployment would save you time and money by eliminating the need to look for and install new equipment while lowering your overhead costs. Outsourcing a fully equipped factory, equipment, or even staff can also assist in lowering overhead costssince you will only pay for what you utilize. As such, it is a viable method to incorporate into your production process. Employ an In-house Maintenance Expert An in-house repair technician can service your equipment for routine inspections, preventive maintenance, and minor repairs. This hiring decision might save money on unforeseen repair expenses or work fees for an outside repair provider. Having someone on-site who can do emergency repairs may save you money if your equipment breaks after business hours. Final Words Manufacturing overhead costis an essential aspect of every manufacturing company's budget to consider. Smart manufacturingis intended to be productive, efficient, and cost-effective while effectively managing production expenditures. Calculating the manufacturing overheadcan provide you with a better understanding of your company's costs and how to minimize them. Depending on the conditions or geographical needs, each manufacturing plant's overhead expensesmay vary. As a result, identify your production overhead costsand concentrate on reducing and improving them. FAQ What are manufacturing overheads? Manufacturing overhead cost is a sum of all indirect expenses incurred during production. Manufacturing overhead expenses usually include depreciation of equipment, employee salaries, and power utilized to run the equipment. What is a decent overhead percentage? When a business is functioning successfully, an overhead ratio of less than 35 % is considered favorable. How can I calculate the cost of manufacturing per unit? The overall manufacturing cost per unit is determined by dividing the total production expenses by the total number of units produced for a particular time.

Read More

Which Additive Manufacturing Process Is Right for You?

Article | December 6, 2021

Additive Manufacturing (AM) uses computer-aided design (CAD) or 3D object scanners to create accurate geometric features. In contrast to traditional manufacturing, which frequently involves milling or other processes to eliminate superfluous material, these are produced layer by layer, as with a 3D printing process. The global additive manufacturing market is expected to grow at a 14.42 percent annual rate from USD 9.52 billion in 2020 to USD 27.91 billion in 2028, according to reports and data. Overall, the worldwide 3D printing industry is gaining traction due to various reasons, some of which are listed below. Significantly, greater resolution Reduced manufacturing costs as a result of recent technology breakthroughs Ease of creating customised goods Increasing possibilities for printing with diverse materials Funding by the government for 3D printing ventures Additive manufacturing is available or may be implemented in various procedures, which is the primary objective of this article. First, we'll look at the seven additive manufacturing processes and which one is the best to use. So let us begin. “Don’t be afraid to go outside of your industry to learn best practices. There might be something that surprises you or inspires you to try in your line of work.” – Emily Desimone, Director of Global Marketing at SLM Solutions Additive Manufacturing Processes There are numerous diverse additive manufacturing processes, each with its own set of standards. Here are the seven additive manufacturing procedures that many manufacturers consider based on their benefits from each process, or whichever approach best suits their product requirements. Material Jetting This additive manufacturing process is quite similar to that of conventional inkjet printers, in which material droplets are selectively placed layer by layer to build a three-dimensional object. After completing a layer, it is cured with UV radiation. VAT Photo Polymerization This procedure employs a technology called photo polymerization, in which radiation-curable resins or photopolymers are utilized to ultraviolet light to generate three-dimensional objects selectively. When these materials are exposed to air, they undergo a chemical reaction and solidify. Stereo lithography, Digital Light Processing, and Continuous Digital Light Processing are the three primary subcategories. Binder Jetting Binder jetting is a process that deposits a binding agent, typically in liquid form, selectively onto powdered material. The print head deposits alternating layers of bonding agent and construction material and a powder spreader to create a three-dimensional object. Material Extrusion S. Scott Crump invented and patented material extrusion in the 1980s using Fused Deposition Modeling (FDM). The continuous thermoplastic filament is fed through a heated nozzle and then deposited layer by layer onto the build platform to produce the object. Powder Bed Fusion Powder bed fusion procedures, particularly selective laser sintering, were the pioneers of industrial additive manufacturing. This approach melts the powdered material and fuses it using a laser or electron beam to form a tangible item. The primary kinds of powder bed fusion are direct metal laser sintering, selective laser sintering, multi-jet fusion, electron beam melting, selective laser melting, and selective heat sintering. Sheet Lamination Sheet lamination is a catch-all term encompassing ultrasonic additive manufacturing, selective deposition lamination, and laminated object manufacturing. All of these technologies stack and laminate sheets of material to form three-dimensional objects. After the object is constructed, the parts' undesirable areas are gradually removed layer by layer. Directed Energy Deposition Directed energy deposition technology employs thermal energy to melt and fuse the materials to form a three-dimensional object. These are pretty similar to welding processes, but are much more intricate. Which Additive Manufacturing Process is best? Why? Based on three fundamental factors, additive manufacturing techniques are categorized into seven types. First, the way material is solidified is determined first by the type of material employed, then by the deposition technique, and finally by how the material is solidified. The end-user often chooses an additive manufacturing technique that best suits his requirements, followed by the explicit material for the process and application, out of the seven basic additive manufacturing processes. Polymer materials are commonly used in AM techniques because they are adaptable to various procedures and can be modified to complicated geometries with high precision. Carbon-based compounds are used to strengthen polymers. Polymers, both solid and liquid, have been widely used due to the variety of shapes, formability, and end-use qualities available. Wherever the light-activated polymer contacts the liquid's surface, it instantly solidifies. Photo polymerization, powder bed fusion, material jetting, and material extrusion are the most common additive manufacturing procedures for polymers. The materials employed in these processes can be liquid, powder, or solid (formed materials such as polymer film or filament). How BASF is Using Additive Manufacturing BASF is a chemical company. BASF, one of the world's major chemical companies, manufactures and provides a range of 3D printing filaments, resins, and powders within its extensive material portfolio. The company, well-known in the 3D printing sector, has formed major material agreements with several 3D printer manufacturers, including HP, BigRep, Essentium, BCN3D, and others. BASF went even further in 2017 by establishing BASF 3D printing Solutions GmbH (B3DPS) as a wholly-owned subsidiary to expand the company's 3D printing business. In addition, BASF stated last year that B3DPS would change its name to Forward AM. BASF's role in the 3D printing business, however, is not limited to material development. BASF has made several investments in 3D printing companies over the years, including the acquisition of Sculpteo, one of the significant French 3D printing service bureaus, last year. BASF sees 3D printing as having a bright future. With the growing popularity of professional 3D printers, all of these systems will eventually require robust, high-quality polymer materials to perform at their best – and BASF has been paving the way to becoming one of the leading solution providers. Final Words All additive manufacturing procedures are unique and helpful in their way. Still, some have additional advantages over others, such as the material used, highresolution, precision, and the ability to build complicated parts. Because of these added benefits, photopolymerization, material jetting, powder bed fusion, and material extrusion are preferred over others. Therefore, choose the AM process that is best suited to your manufacturing business and will assist you in achieving the desired final product output. FAQs What are the benefits of additive manufacturing? AM enables manufacturers to reduce waste, prototyping costs, and customization while conserving energy and increasing production flexibility. Additionally, it benefits the supply chain and the environment, encouraging businesses to increase their manufacturing sustainability. What is the major challenge in additive manufacturing? Many businesses are struggling with the current difficulty of producing large and odd-sized parts using additive manufacturing. So, this can be considered a significant challenge in additive manufacturing. What are the steps of additive manufacturing? The additive manufacturing steps are divided into four steps as below, Step1 - Design a model with CAD software Step2 -Pre-processing Step3 -Printing Step4 - Post-processing { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What are the benefits of additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "AM enables manufacturers to reduce waste, prototyping costs, and customization while conserving energy and increasing production flexibility. Additionally, it benefits the supply chain and the environment, encouraging businesses to increase their manufacturing sustainability." } },{ "@type": "Question", "name": "What is the major challenge in additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Many businesses are struggling with the current difficulty of producing large and odd-sized parts using additive manufacturing. So, this can be considered a significant challenge in additive manufacturing." } },{ "@type": "Question", "name": "What are the steps of additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "The additive manufacturing steps are divided into four steps as below, Step1 - Design a model with CAD software Step2 - Pre-processing Step3 - Printing Step4 - Post-processing" } }] }

Read More

Spotlight

GM Nameplate

Established in 1954, GM Nameplate is a leading international manufacturer specializing in the custom design and manufacture of product identification components including nameplates, decals, labels and custom panels; electronic input devices such as membrane switches, rubber keypads and touch screens; injection and compression molding; plastic decorating and large format digital graphics.

Events