RAPID + TCT: Renishaw showcases AM capabilities

| May 12, 2019
RAPID + TCT: RENISHAW SHOWCASES AM CAPABILITIES
To share its expertise in medical device manufacturing, global engineering technologies company Renishaw is returning to RAPID + TCT, the additive manufacturing (AM) and 3D printing event in the United States. From the 21st to the 23rd of May 2019, Renishaw can be found on Booth 827 at the Cobo Center in Detroit, Michigan.

Spotlight

Stolle Machinery Company LLC

Stolle is the world’s leading supplier of two piece can and end-making machinery for the global canmaking industry. Our high speed machines can be found in can plants around the world performing the value-added functions of the canmaking process. In addition to supplying individual machines, we design, install and support complete can and end lines for beverage and food cans.

OTHER ARTICLES

Which Additive Manufacturing Process Is Right for You?

Article | December 6, 2021

Additive Manufacturing (AM) uses computer-aided design (CAD) or 3D object scanners to create accurate geometric features. In contrast to traditional manufacturing, which frequently involves milling or other processes to eliminate superfluous material, these are produced layer by layer, as with a 3D printing process. The global additive manufacturing market is expected to grow at a 14.42 percent annual rate from USD 9.52 billion in 2020 to USD 27.91 billion in 2028, according to reports and data. Overall, the worldwide 3D printing industry is gaining traction due to various reasons, some of which are listed below. Significantly, greater resolution Reduced manufacturing costs as a result of recent technology breakthroughs Ease of creating customised goods Increasing possibilities for printing with diverse materials Funding by the government for 3D printing ventures Additive manufacturing is available or may be implemented in various procedures, which is the primary objective of this article. First, we'll look at the seven additive manufacturing processes and which one is the best to use. So let us begin. “Don’t be afraid to go outside of your industry to learn best practices. There might be something that surprises you or inspires you to try in your line of work.” – Emily Desimone, Director of Global Marketing at SLM Solutions Additive Manufacturing Processes There are numerous diverse additive manufacturing processes, each with its own set of standards. Here are the seven additive manufacturing procedures that many manufacturers consider based on their benefits from each process, or whichever approach best suits their product requirements. Material Jetting This additive manufacturing process is quite similar to that of conventional inkjet printers, in which material droplets are selectively placed layer by layer to build a three-dimensional object. After completing a layer, it is cured with UV radiation. VAT Photo Polymerization This procedure employs a technology called photo polymerization, in which radiation-curable resins or photopolymers are utilized to ultraviolet light to generate three-dimensional objects selectively. When these materials are exposed to air, they undergo a chemical reaction and solidify. Stereo lithography, Digital Light Processing, and Continuous Digital Light Processing are the three primary subcategories. Binder Jetting Binder jetting is a process that deposits a binding agent, typically in liquid form, selectively onto powdered material. The print head deposits alternating layers of bonding agent and construction material and a powder spreader to create a three-dimensional object. Material Extrusion S. Scott Crump invented and patented material extrusion in the 1980s using Fused Deposition Modeling (FDM). The continuous thermoplastic filament is fed through a heated nozzle and then deposited layer by layer onto the build platform to produce the object. Powder Bed Fusion Powder bed fusion procedures, particularly selective laser sintering, were the pioneers of industrial additive manufacturing. This approach melts the powdered material and fuses it using a laser or electron beam to form a tangible item. The primary kinds of powder bed fusion are direct metal laser sintering, selective laser sintering, multi-jet fusion, electron beam melting, selective laser melting, and selective heat sintering. Sheet Lamination Sheet lamination is a catch-all term encompassing ultrasonic additive manufacturing, selective deposition lamination, and laminated object manufacturing. All of these technologies stack and laminate sheets of material to form three-dimensional objects. After the object is constructed, the parts' undesirable areas are gradually removed layer by layer. Directed Energy Deposition Directed energy deposition technology employs thermal energy to melt and fuse the materials to form a three-dimensional object. These are pretty similar to welding processes, but are much more intricate. Which Additive Manufacturing Process is best? Why? Based on three fundamental factors, additive manufacturing techniques are categorized into seven types. First, the way material is solidified is determined first by the type of material employed, then by the deposition technique, and finally by how the material is solidified. The end-user often chooses an additive manufacturing technique that best suits his requirements, followed by the explicit material for the process and application, out of the seven basic additive manufacturing processes. Polymer materials are commonly used in AM techniques because they are adaptable to various procedures and can be modified to complicated geometries with high precision. Carbon-based compounds are used to strengthen polymers. Polymers, both solid and liquid, have been widely used due to the variety of shapes, formability, and end-use qualities available. Wherever the light-activated polymer contacts the liquid's surface, it instantly solidifies. Photo polymerization, powder bed fusion, material jetting, and material extrusion are the most common additive manufacturing procedures for polymers. The materials employed in these processes can be liquid, powder, or solid (formed materials such as polymer film or filament). How BASF is Using Additive Manufacturing BASF is a chemical company. BASF, one of the world's major chemical companies, manufactures and provides a range of 3D printing filaments, resins, and powders within its extensive material portfolio. The company, well-known in the 3D printing sector, has formed major material agreements with several 3D printer manufacturers, including HP, BigRep, Essentium, BCN3D, and others. BASF went even further in 2017 by establishing BASF 3D printing Solutions GmbH (B3DPS) as a wholly-owned subsidiary to expand the company's 3D printing business. In addition, BASF stated last year that B3DPS would change its name to Forward AM. BASF's role in the 3D printing business, however, is not limited to material development. BASF has made several investments in 3D printing companies over the years, including the acquisition of Sculpteo, one of the significant French 3D printing service bureaus, last year. BASF sees 3D printing as having a bright future. With the growing popularity of professional 3D printers, all of these systems will eventually require robust, high-quality polymer materials to perform at their best – and BASF has been paving the way to becoming one of the leading solution providers. Final Words All additive manufacturing procedures are unique and helpful in their way. Still, some have additional advantages over others, such as the material used, highresolution, precision, and the ability to build complicated parts. Because of these added benefits, photopolymerization, material jetting, powder bed fusion, and material extrusion are preferred over others. Therefore, choose the AM process that is best suited to your manufacturing business and will assist you in achieving the desired final product output. FAQs What are the benefits of additive manufacturing? AM enables manufacturers to reduce waste, prototyping costs, and customization while conserving energy and increasing production flexibility. Additionally, it benefits the supply chain and the environment, encouraging businesses to increase their manufacturing sustainability. What is the major challenge in additive manufacturing? Many businesses are struggling with the current difficulty of producing large and odd-sized parts using additive manufacturing. So, this can be considered a significant challenge in additive manufacturing. What are the steps of additive manufacturing? The additive manufacturing steps are divided into four steps as below, Step1 - Design a model with CAD software Step2 -Pre-processing Step3 -Printing Step4 - Post-processing { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What are the benefits of additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "AM enables manufacturers to reduce waste, prototyping costs, and customization while conserving energy and increasing production flexibility. Additionally, it benefits the supply chain and the environment, encouraging businesses to increase their manufacturing sustainability." } },{ "@type": "Question", "name": "What is the major challenge in additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Many businesses are struggling with the current difficulty of producing large and odd-sized parts using additive manufacturing. So, this can be considered a significant challenge in additive manufacturing." } },{ "@type": "Question", "name": "What are the steps of additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "The additive manufacturing steps are divided into four steps as below, Step1 - Design a model with CAD software Step2 - Pre-processing Step3 - Printing Step4 - Post-processing" } }] }

Read More

Top 5 Manufacturing Applications of Machine Vision

Article | October 20, 2021

Machine vision is becoming increasingly prevalent in manufacturing daily across industries. The machine vision manufacturing practice provides image-based automated inspection and analysis for various applications, including automatic inspection, process control, and robot guiding, often found in the manufacturing business. This breakthrough in manufacturing technology enables producers to be more innovative and productive to meet customer expectations and deliver the best products on the market. A renowned industry leader Mr. Matt Mongonce conveyed in an interview with Media7, As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity -Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca. Why is Machine Vision so Critical? The machine vision manufacturing process is entirely automated, with no human intervention on the shop floor. Thus, in a manufacturing process, machine vision adds significant safety and operational benefits. Additionally, it eliminates human contamination in production operations where cleanliness is critical. For instance, the healthcare business cannot afford human contamination in some circumstances to ensure the safety of medicines. Second, the chemical business is prohibited from allowing individuals to come into touch with chemicals for the sake of worker safety. Thus, machine vision is vital in these instances, so it is critical to integrate machine vision systems into your production process. Machine Vision Application Examples To better understand how businesses are utilizing machine vision in production, we will look at five cases. Predictive Upkeep Even a few seconds of production line downtime might result in a significant financial loss in the manufacturing industry. Machine vision systems are used in industrial processes to assist manufacturers in predicting flaws or problems in the production line before the system failure. This machine vision capability enables manufacturing processes to avoid breakdowns or failures in the middle of the manufacturing process. How is FANUC America Corporation Avoiding the Production Line Downtime with ROBOGUIDE and ZDT? FANUC is a United States-based firm that is a market leader in robotics and ROBOMACHINE technology, with over 25 million units deployed worldwide. In addition, the company's professionals have created two products that are pretty popular in the manufacturing industry: ROBOGUIDE and ZDT (Zero Down Time). These two standout products assist manufacturers in developing, monitoring, and managing production line automation. As a result, producers can enhance production, improve quality, and maximize profitability while remaining competitive. Inspection of Packages To ensure the greatest possible quality of products for their target consumer groups, manufacturers must have a method in place that enables them to inspect each corner of their product. Machine vision improves the manufacturing process and inspects each product in detail using an automated procedure. This technology has been used in many industries, including healthcare, automation, and electronics. Manufacturers can detect faults, cracks, or any other defect in the product that is not visible to the naked eye using machine vision systems. The machine vision system detects these faults in the products and transmits the information to the computer, notifying the appropriate person during the manufacturing process. Assembly of Products and Components The application of machine vision to industrial processes involves component assembly to create a complete product from a collection of small components. Automation, electronics manufacturing, healthcare (medicine and medical equipment manufacturing), and others are the industries that utilize the machine vision system in their manufacturing process. Additionally, the machine vision system aids worker safety during the manufacturing process by enhancing existing safety procedures. Defect Elimination Manufacturers are constantly endeavoring to release products that are devoid of flaws or difficulties. However, manually verifying each product is no longer practicable for anybody involved in the manufacturing process, as production counts have risen dramatically in every manufacturing organization. This is where machine vision systems come into play, performing accurate quality inspections and assisting producers in delivering defect-free items to their target clients. Barcode Scanning Earlier in the PCB penalization process, where numerous identical PCBs were made on a single panel, barcodes were used to separate or identify the PCBs manually by humans. This was a time-consuming and error-prone process for the electronics manufacturing industry. This task is subsequently taken over by a machine vision system, in which each circuit is segregated and uniquely identified using a robotics machine or a machine vision system. The high-tech machine vision system "Panel Scan" is one example of a machine vision system that simplifies the PCB tracing procedure. Final Words The use of machine vision in the manufacturing business enables firms to develop more accurate and complete manufacturing processes capable of producing flawless products. Incorporating machine vision into manufacturing becomes a component of advanced manufacturing, which is projected to be the future of manufacturing in 2022. Maintain current production trends and increase your business revenue by offering the highest-quality items using a machine vision system. FAQ What is the difference between computer vision and machine vision? Traditionally, computer vision has been used to automate image processing, but machine vision is applied to real-world interfaces such as a factory line. Where does machine vision come into play? Machine vision is critical in the quality control of any product or manufacturing process. It detects flaws, cracks, or any blemishes in a physical product. Additionally, it can verify the precision and accuracy of any component or part throughout product assembly. What are the fundamental components of a machine vision system? A machine vision system's primary components are lighting, a lens, an image sensor, vision processing, and communications. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What is the difference between computer vision and machine vision?", "acceptedAnswer": { "@type": "Answer", "text": "Traditionally, computer vision has been used to automate image processing, but machine vision is applied to real-world interfaces such as a factory line." } },{ "@type": "Question", "name": "Where does machine vision come into play?", "acceptedAnswer": { "@type": "Answer", "text": "Machine vision is critical in the quality control of any product or manufacturing process. It detects flaws, cracks, or any blemishes in a physical product. Additionally, it can verify the precision and accuracy of any component or part throughout product assembly." } },{ "@type": "Question", "name": "What are the fundamental components of a machine vision system?", "acceptedAnswer": { "@type": "Answer", "text": "A machine vision system's primary components are lighting, a lens, an image sensor, vision processing, and communications." } }] }

Read More

Additive Manufacturing: A Ground-breaking Change to Empower Industry 4.0

Article | November 20, 2021

Advanced manufacturing enables the concept of industry 4.0 and represents a significant milestone in the manufacturing industry. Additive manufacturing is a critical component of the industry 4.0 concept, propelling the industry to new heights of innovation. In various fields that are not immediately related to industry 4.0 or manufacturing, additive manufacturing has alternatively been referred to as 3D printing. The numerous advantages of additive manufacturing, such as reduced cost and time, are boosting its popularity and use in manufacturing and other industries. “Digital technology is so empowering on so many fronts, but for it to be empowering, it must be for everyone.” – Michael Walton, Director, Industry Executive (Manufacturing) at Microsoft. The global market of additive manufacturing is anticipated to increase at a 14.42 percent compound annual growth rate from USD 9.52 billion in 2020 to USD 27.91 billion in 2025. According to this market research, the future of 3D printing or additive manufacturing is quite bright in the coming years, and we will see widespread application across industries. First, let us understand the idea of additive manufacturing and its benefits to various industries. Concept of Additive Manufacturing Additive manufacturing is building a real thing from a three-dimensional computer model, often by successively layering a material. This technique utilizes computer-aided design (CAD) software or 3D object scanners to command devices to deposit material in exact geometric shapes layer by layer. As the name implies, additive manufacturing involves the addition of material to produce an object. Additive Manufacturing Benefits Produces Fewer Scraps and Trash When we compare additive manufacturing to traditional manufacturing techniques such as milling or turning, additive manufacturing adds only the amount of material required to build a product. As a result, it generates less waste and conserves scarce resources. Reduces the Time and Cost of Prototyping Making a product prototype is now faster, easier, and cheaper. Other production processes, like milling, have high setup and material costs. Prototyping is less expensive and takes less time, so you can quickly produce, test, and modify. It also shows practically instant verification of progress done. It Encourages the Digitalization of Businesses Continuous and effective communication between devices, machines, and robots is required for additive manufacturing. However, this is only achievable with effective digitization of production processes. As a result, businesses invest more in digital and IoT, a prerequisite for Industry 4.0. It Simplifies the Assembling Process by Condensing it into a Single Component Additive manufacturing in Industry 4.0 also simplifies the production process, especially product assembly. A traditional component requires numerous manufacturing procedures. This increases material and labor expenses as well as production time. However, additive manufacturing allows you to print the group in one piece. The Top Three Industries That Make the Most Use of Additive Manufacturing Additive manufacturing is presently used in a variety of industries. However, specific sectors make the best use of it. Thus, we will examine the industries embracing additive manufacturing technology and emerging with new life easing solutions. Healthcare In the healthcare industry, dentistry is the critical application of additive manufacturing. Technology helps it create bridges, crowns, braces, and dentures, always in high demand. Additive manufacturing has also been used to create tissues and organs, surgical tools, patient-specific surgical models, and personalized prosthetics. For example, many medical equipment companies employ 3D printing to build patient-specific organ replicas that surgeons can practice before completing complex surgeries. Aerospace Additive manufacturing is utilized to fabricate metal brackets that serve as structural components within airplanes. Prototypes are increasingly being printed in three dimensions, allowing designers to fine-tune the shape and fit of finished parts. In addition, interior airplane components such as cockpit dashboards and door handles are manufactured using 3D printing services. Automotive 3D printing can manufacture molds and thermoforming tools, grips, jigs, and fixtures for the automotive industry. Automakers utilize additive printing to customize parts for specific vehicles or drivers (e.g., seats for racing cars). An appealing colored dashboard, efficient fuel systems, and complicated braking mechanisms are all possible with 3D printing in the automotive industry. Therefore, it is best suited for pre-production, manufacture, and modification of automotive parts. How Does NASA use additive manufacturing in its space projects? The space environment has always been unpredictable, and scientists must be adequately prepared before embarking on any space mission. They must consider the durability and weight of all the objects they propose to transport into space. To land any object on a planet that does not have a flat surface or similar weather conditions to earth, scientists must design each object with these considerations in mind. “You always want it to be as light as possible, but you also want it to be strong enough.” -Chris Chapman, NASA Test Engineer It is not conceivable to make items capable of dealing with all the changes on other planets and achieving these project objectives using conventional materials and production processes. However, scientists do require a technique that will enable them to manufacture lighter and stronger objects for their space missions. 3D printing has played a significant part in meeting this demand and has provided space projects to manufacture objects that would withstand any unexpected events during space missions. For example, NASA employed 3D-printed metal components in their Mars project. NASA's specialized engineers are utilizing additive manufacturing to create rocket engines and possible Moon and Mars outposts. NASA used the 11 3D printed metal components on its Mars mission as well. It employed 3D printed components for the first time in the Curiosity rover, which landed on Mars in 2012. It was a successful project, and NASA has since begun employing 3D printed parts in its space missions to make machines lighter while remaining robust and functional. Final Words Additive manufacturing technology is making a real difference in the manufacturing process, and it is becoming the trending technology in the manufacturing industry. The benefits of additive manufacturing make the manufacturing process more advanced, easy, and customer-oriented. Additive manufacturing is the major transformation in the manufacturing industry and will take it to new heights of precision. FAQ Why is additive manufacturing critical? Additive manufacturing reduces the time and cost of prototyping and reduces the scraps amount during the manufacturing process of any object. In addition, it simplifies multiple processes from various industries. Are additive manufacturing and 3D printing the same? Yes, additive manufacturing and 3D printing are the same processes with different names as per the choice of the different industries. For example, in some industries such as space missions, It is also referred to as Fused Deposition Modelling (FDM). Which is the most applied sector for additive manufacturing? Healthcare is the industry that utilizes additive manufacturing technology the most. It also helps medical practitioners practice surgery on any critical body part with its 3D printed model from human tissues. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "Why is additive manufacturing critical?", "acceptedAnswer": { "@type": "Answer", "text": "Additive manufacturing reduces the time and cost of prototyping and reduces the scraps amount during the manufacturing process of any object. In addition, it simplifies multiple processes from various industries." } },{ "@type": "Question", "name": "Are additive manufacturing and 3D printing the same?", "acceptedAnswer": { "@type": "Answer", "text": "Yes, additive manufacturing and 3D printing are the same processes with different names as per the choice of the different industries. For example, in some industries such as space missions, It is also referred to as Fused Deposition Modelling (FDM)." } },{ "@type": "Question", "name": "Which is the most applied sector for additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Healthcare is the industry that utilizes additive manufacturing technology the most. It also helps medical practitioners practice surgery on any critical body part with its 3D printed model from human tissues." } }] }

Read More

Manufacturing Branding: A Ground-breaking Method for Increasing Product Sales

Article | January 19, 2022

Manufacturing branding is a relatively recent trend that is gaining traction in the manufacturing sector. Brand marketing is important for manufacturers in a variety of ways, including increasing business revenue and establishing product credibility within their target consumer group. 82% of people feel better about a brand after reading personalized content. 94% of customers are inclined to develop a relationship with a brand that is completely transparent. 13% of consumers would spend 31-50% more on your products or services if they believed your business was making a positive difference in the world. In this article, we will look at the advantages of branding to a manufacturer as well as how brand manufacturing may be established. What Difference Can Manufacturer Branding Make? "A brand is a voice, and a product is a souvenir" -Lisa Gansky, an American entrepreneur, writer, and speaker Your Name and Work Will Be Publicized Branding is the process of enriching your products with a visual, linguistic, and conceptual identity that differentiates them from competitors. Ideally, factory branding would help you reach out to your potential clients by making them aware of your company's name and becoming familiar with what you do. Brand Marketing Builds Emotional Bonds Manufacturing branding is more than merely developing an image in the minds of your customers. It's about telling a story that strikes a chord with them.Once you've defined your message and the motivation for developing your products, customers will be able to connect with you more easily.Relatability is critical in an era of ever-changing trends and consumer behavior. Your clients will simply switch over to another firm that provides the same service and fosters a sense of belonging. The emotional value of your manufacturing brands should not be underestimated. Building Trust Is Easier with a Strong Brand A manufacturing brand that wishes to remain in business for the long run will communicate with its customers. The customers understand that you would not connect or share your story unless you intended to grow with them. However, this strategy works only if the factory branding is well-executed and demonstrates its authenticity. Modern customers can easily notice dishonesty or the use of a phony character. Increase of Distribution Channels Working on your manufacturing branding will help you expand your sales. Just make sure you have the necessary tools to sell via different channels. Creating a memorable brand doesn't merely attract customers. It will also assist in attracting potential distributors who may otherwise be reluctant to be your distributing partners. Your ability to negotiate quality agreements with resellers and reps will increase when your manufacturing brand is well-known. It simplifies their lives and saves them money on marketing. This is a domino effect issue. More distributors mean more exposure for your business, but a delicate balance must be maintained. Your personal connection with clients may be lost if you abdicate brand responsibility. So, provide superior customer service to maintain a connection with your customers. Profit Margin Is Increased A strong manufacturing brand will allow you to sell at greater prices. People will be happy to pay for a quality brand that they can trust. But what would really set you apart from the rest is if you could beat private companies at branding. Private brands are the house brands of shops and huge resellers who offer cheaper copies of your goods. Customers should be able to tell the price difference between a factory brand and a private brand. "You can’t build a reputation on what you are going to do." – Henry Ford, the founder of the Ford Motor Company How to Build an Effective Manufacturing Brand? Identify Your Intended Audience Identifying your target demographic is the first step in intentionally building your brand. You can build a buyer persona of the typical user of your product or by analyzing your current consumer base. Consider their age, gender, industry, occupation, education, interests, etc. To grow your brand and market your products more effectively, you need to create a buyer persona. Conduct Competitor Analysis Following that, it would be advisable to analyze your competitors' brands. In various markets and with companies in general, there are many brand features that are unique and widely utilized, and it would be counterproductive for a corporation to highlight those elements. For example, many B2B companies take pride in their product quality, reliability factor, and personal touch. When everyone is highlighting the same brand qualities, you will need a unique approach to stand out. Developing a Central Theme A brand's central theme acts as a pillar. It summarizes your company's principles and objectives in a single statement, or perhaps one word. It's a lot simpler to come up with marketing ideas and campaigns that connect with your company's philosophy and seem like a part of the brand. Developing Your Brand's Individuality Now, imagine your brand as a person, considering the preceding phases. You may gather every piece of information possible. The more specific you are, the more solidity your brand identity will have. Brand themes may help you develop your brand's personality and story. Using themes, you may classify individuals and fictional characters based on a common set of personality qualities. These are commonly used in psychology and marketing. Creating a Visual Brand for Your Business Finally, create a visual illustration for your organization. This includes producing unique logos that represent your company's beliefs, selecting colors, designing your website and blog, and everything that can be related to visualizing your corporate brand. Get familiar with geometric and color psychology, look at what prominent brands and other firms in your industry have done, and get on board with a good graphic designer to create the materials. Best Channels for Manufacturers' Branding Many businesses utilize social media, blogging with SEO suggestions, and email newsletters to boost their online presence. Content is the most important consideration when adopting these marketing methods. Hire good specialists to assist you in understanding your buyer's persona and developing buyer-centric content to capture their attention and generate potential leads for your business.An active social media presence enables you to increase the number of followers on your social media sites and reach millions of people via these platforms. Furthermore, you can start weekly newsletters to keep your subscribers updated on the latest developments, campaigns, and how you're working to develop the best goods possible for your target groups. Final Words Effective branding for manufacturing is what you need to increase your company's popularity and demand in a competitive market. Once you've established yourself as a known brand in your sector, you may pursue manufacturer branding, which is used by many well-known manufacturers such as Ford, Nestle, Coca-Cola, and Apple. Use the above-mentioned techniques to create your own brand and stay ahead of the curve in your industry. FAQ What are the four elements of branding? A successful brand requires a strong brand identity, brand image, brand culture, and brand personality, all of which must be present. What is the manufacturer’s brand? A product that has the manufacturer’s name on it or is used to market and sell the product. What is manufacturers’ label? The manufacturers label provides name and address of the manufacturer or distributor and relevant hazard warnings.

Read More

Spotlight

Stolle Machinery Company LLC

Stolle is the world’s leading supplier of two piece can and end-making machinery for the global canmaking industry. Our high speed machines can be found in can plants around the world performing the value-added functions of the canmaking process. In addition to supplying individual machines, we design, install and support complete can and end lines for beverage and food cans.

Events