PVEL highlights industry trends and challenges in module manufacturing and technology

FINLAY COLVILLE| October 10, 2019
PVEL HIGHLIGHTS INDUSTRY TRENDS AND CHALLENGES IN MODULE MANUFACTURING AND TECHNOLOGY
The third PV ModuleTech conference takes place in Penang, Malaysia on 22-23 October 2019. One of the key companies participating in the PV ModuleTech event this year is PV Evolution Labs. PVEL provides extended reliability and performance tests to evaluate PV modules for the downstream market and produces the annual PV Module Reliability Scorecard.

Spotlight

Spartan Motors, Inc.

At Spartan Motors, we know the road our customers face and travel. From our beginnings in custom chassis engineering to our emergence in specialized vehicle design, custom manufacturing, and contract assembly, we combine expertise in what best fits beneath your vehicle with the ability to fully optimize what sits above it.

OTHER ARTICLES

How Smart Manufacturing Is Powered by Digital Twin Technology?

Article | December 8, 2021

A digital twin is a virtual model of an object or system that comprises its lifecycle. It is updated with real-time data and aids decision-making through simulation, machine learning, and reasoning for the production system. IoT sensor data from the original object is used to create a digital twin of the system. This cloud-connected data allows engineers to monitor systems and model system dynamics in real-time. Modifications can be tested on the digital twin before making changes to the original system. Considering that digital twins are supposed to replicate a product's complete lifecycle and are used throughout the production process, it's not unexpected that digital twins have become prevalent in all stages of manufacturing. “More than a blueprint or schematic, a digital twin combines a real-time simulation of system dynamics with a set of executive controls,” – Dr. Daniel Araya, consultant and advisor with a special interest in artificial intelligence, technology policy, and governance Companies will increasingly embrace digital twins to boost productivity and decrease expenses. As per recent research by Research and Markets, nearly 36% of executives across industries recognize the benefits of digital twinning, with half planning to implement it by 2028.So how does this digital twin technology benefit modern manufacturing? Let's have a look. How the Digital Twin Drives Smart Manufacturing Digital twins in manufacturing are used to replicate production systems. Manufacturers can develop virtual representations of real-world products, equipment, processes, or systems using data from sensors connected to machines, tools, and other devices. In manufacturing, such simulations assist in monitoring and adapting equipment performance in real-time. With machine learning techniques, digital twins can predict future events and anticipate potential difficulties. For maintenance, digital twins allow for quick detection of any problems. They collect real-time system data, prior failure data, and relevant maintenance data. The technique employs machine learning and artificial intelligence to predict maintenance requirements. Using this data, companies can avoid production downtime. Digital Twin and Artificial Intelligence (AI) in manufacturing Using digital twins and AI in production can enhance uptime by predicting potential failures and keeping equipment working smoothly. In addition, there are significant cost savings in the planning and design process as digital twins and AI can be used to replicate a specific scenario. Maintenance is another area that has seen significant progress with the use of digital twin manufacturing. A Digital Twin powered by AI can predict when a piece of equipment will fail, allowing you to arrange predictive maintenance that is not simply taking information from OEM manuals but can significantly cut maintenance expenses along with reducing downtime. Using the digital twin, it is feasible to train virtual workers in high-risk functions, similar to how pilots are trained using flight simulators. It also frees up highly skilled workers to upgrade the plant and streamline operations. General Electric Created the Most Advanced Digital Twin General Electric Company (GE) is a multinational business based in Boston that was founded in 1892. It has developed the world's most advanced digital twin, which blends analytic models for power plant components that monitor asset health, wear, and performance with KPIs (Key Performance Indicators) determined by the customer and the organization's objectives. The Digital Twin is powered by PredixTM, an industrial platform built to manage huge amounts of data and run analytic algorithms. General Electric Company provides extra "control knobs" or "dimensionality" that can be utilized to improve the operation of the system or asset modeled with GE Digital Twin. Final Words Given the numerous advantages of digital twin manufacturing, the potential for digital twins to be used in manufacturing is virtually endless in the near future. There will be a slew of new advancements in the field of digital twin manufacturing. As a result, digital twins are continually acquiring new skills and capabilities. The ultimate goal of all of these enhancements is to create the insights necessary to improve products and streamline processes in the future. FAQ What is a digital twin in manufacturing? The digital twins could be used to monitor and enhance a production line or perhaps the whole manufacturing process, from product design to production. How digital twin benefit manufacturers? Using digital twins to represent products and manufacturing processes, manufacturers can save assembly, installation, and validation time and costs. What is a digital thread? A digital twin is a realistic version of a product or system that replicates a company's equipment, controls, workflows, and systems. The digital thread, on the other hand, records a product's life cycle from creation to dissolution. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What is a digital twin in manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "The digital twins could be used to monitor and enhance a production line or perhaps the whole manufacturing process, from product design to production." } },{ "@type": "Question", "name": "How digital twin benefit manufacturers?", "acceptedAnswer": { "@type": "Answer", "text": "Using digital twins to represent products and manufacturing processes, manufacturers can save assembly, installation, and validation time and costs." } },{ "@type": "Question", "name": "What is a digital thread?", "acceptedAnswer": { "@type": "Answer", "text": "A digital twin is a realistic version of a product or system that replicates a company's equipment, controls, workflows, and systems. The digital thread, on the other hand, records a product's life cycle from creation to dissolution." } }] }

Read More

Rex Moore Proves Project Business Automation Provides Predictive and Proactive Resource Requirements

Article | July 28, 2021

Rex Moore Group, Inc. is a Top50 electrical contractor delivering unmatched integrated electrical solutions. As an early adopter of Lean manufacturing principles, Rex Moore has created a company-wide culture of continuous improvement that drives significant value to their clients. The firm contracts and performs both design/build and bid work for all electrical, telecommunications, and integrated systems market segments. Rex Moore has a full-service maintenance department to cover emergency and routine requirements for all facilities, whether an existing facility or one that has been recently completed by the company. The ability to negotiate and competitively bid various forms of contracts including lump-sum, fixed fee, hourly rate, and cost-plus work as a prime contractor, subcontractor, or joint venture is enhanced with Project Business Automation (PBA) from Adeaca. This solution permits the company to propose work only if they are in a position to be competitive in the marketplace and provide excellent service with fair compensation. Rex Moore used Adeaca PBA as a construction management software for builders and contractors to integrate and facilitate its business processes in its ERP system. Together with Microsoft Dynamics, PBA integrated processes across the company on a single end-to-end platform. This allowed the company to replace 15 different applications with a single comprehensive system, eliminating the costs and inefficiencies associated with multiple systems and silos of information.

Read More

How to Overcome the Additive Manufacturing Challenges in Aerospace

Article | December 6, 2021

Aerospace manufacturing and design are getting advanced with additive manufacturing. However, the limitations of traditional manufacturing techniques sometimes make it incompetent to produce technologically oriented products. Additive Manufacturing (AM)helps the aircraft system run more efficiently by creating lightweight aircraft parts. This is one of the reasons that additive manufacturing is gaining traction in aerospace and other industries. According to recent analysis and data, the global additive manufacturing market is expected to grow from USD 9.52 billion in 2020 to USD 27.91 billion in 2028. The expanding technologies and materials used in additive manufacturing will indeed stimulate industry growth shortly. It’s important to note that there isn’t one channel that is the silver bullet. Most of the time, a combination of different channels will help drive a more powerful outcome.” – Wendy Lee, Director of Marketing at Blue Prism However, the aerospace industry encounters some challenges with additive manufacturing, which is the focus of this article. Scalability, multi-material capabilities, professional workers, high-cost materials, and quality compliance norms are all constraints that aerospace professionals are dealing with. Here we will discuss the top three challenges of additive manufacturing in aerospace and their solutions. Future of Additive Manufacturing in the Aerospace Industry Even though additive manufacturing has been around for a while, it has only lately become advanced enough to be used in the aerospace sector. In the aerospace business, additive manufacturing has the potential to deliver significant benefits. Cost savings, design freedom, weight reduction, shorter time to market, fewer waste materials, better efficiency, and on-demand production are just some of the benefits. Although additive manufacturing cannot make every part, it provides an exciting opportunity to explore feasible alternatives, either supplementing or replacing traditional manufacturing processes. However, it must be taken into account early in the development phase. Additionally, knowledge must be embedded in aircraft design teams to ensure the successful use of additive manufacturing. However, in recent years, AM has become more prevalent in end-to-end manufacturing. According to Deloitte University Press, the future of AM in aerospace may include: Directly embedding additively produced electronics Wings printing 3D printing engine parts Making battlefield repair components Top 3 Additive Manufacturing Challenges in the Aerospace Industry and Solutions While problems are inherent in any new technology, experts overcome them by identifying solutions. Let's look at the top three challenges that the aerospace industry is currently facing and the solutions to overcome them. Lack of Qualified Experts Using 3D printers in production and automating work processes are skills that are lacking. However, the obstacles are natural, and the skilled manufacturing workforce is aging and reluctant to adapt to new design models. This is creating the skills gaps surrounding manipulating AM technology. How to Overcome Less time spent educating employees is better for business. For example, the US National Additive Manufacturing Institute and the European ADMIRE initiative offer accelerated courses via remote learning websites. Of course, you'll need to provide numerous additive manufacturing opportunities to attract the key technologists, either on-site or off-site. They will oversee new hires' activities and help them translate their knowledge of 3D printing into designs and final items. Over Budget Material The typical cost of AM equipment is $300,000. Industrial consumables cost between $100 and $150 per item (although the final price is formed after choosing the material; plastic, for example, is the most budget-friendly option). How to Overcome To overcome this obstacle, you must plan a long-term implementation strategy based on the manufacturing-as-a-service model. On-demand manufacturing reduces manufacturing costs and speeds up product development. You can also go with cheap 3D printers that use cheap welding wire that hasjust come onto the market. They cost $1,200 and may suit your needs. Fresh Quality Compliance Guidelines As 3D printing and CNC manufacturing technologies constantly evolve, there are no established norms or regulations for 3D printed objects. However, 3D printed solutions do not always match traditional quality, durability, and strength. For example, a 3D-printed mechanical part. Can someone order 500 similar parts a few months later? Consistency standards and product post-processing may have a negative impact in such circumstances. So, in such a case, traditional manufacturing wins over 3D printing. How to Overcome You might endeavor to set quality criteria for your 3D-printed products to ensure they are comparable to traditional ones. You can also apply the ANSI AMSC and America Makes standards, which define quality criteria for 3D printed products. How Boeing Applies Additive Manufacturing Technology? Boeing is focusing its efforts on leveraging and speeding up additive manufacturing to transform its manufacturing system and support its growth. The company operates 20 additive manufacturing facilities worldwide and collaborates with vendors to supply 3D-printed components for its commercial, space, and defense platforms. Boeing is now designing missiles, helicopters, and airplanes using 3D printing technology. A small internal team contributes roughly 1,000 3D-printed components to the company's flight projects. Boeing claims that addressing design as an "integrated mechanical system" considerably improves manufacturability and lowers costs. Final Words Additive manufacturing is altering the way the aerospace industry designs and manufactures aircraft parts. Aerospace advanced manufacturing is making aircraft production easier. We've explored solutions to some of the snags that you may encounter. However, other concerns, such as limited multi-material capabilities and size constraints, require solutions, and industry specialists are working on them. Despite these challenges, additive manufacturing is still booming and rocking in a variety of industries. FAQ Why is additive manufacturing used in Aerospace? It allows the industry to build quality parts quickly and inexpensively. Reduce waste and build parts for aircraft that are difficult to manufacture using existing methods. How does additive manufacturing help in Aerospace applications? Environmental control system (ECS) ducting, custom cosmetic aircraft interior components, rocket engine components, combustor liners, composite tooling, oil and fuel tanks, and UAV components are examples of typical applications. 3D printing helps in producing solid, complicated pieces with ease. Which aerospace firms use additive manufacturing/3D printing? Boeing and Airbus are two of the many aircraft businesses that use additive-created parts in their planes. Boeing incorporates additive manufacturing (AM) components into both commercial and military aircraft. Airbus also employs AM metal braces and bleed pipes on the A320neo and A350 XWB aircraft. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "Why is additive manufacturing used in Aerospace?", "acceptedAnswer": { "@type": "Answer", "text": "It allows the industry to build quality parts quickly and inexpensively. Reduce waste and build parts for aircraft that are difficult to manufacture using existing methods." } },{ "@type": "Question", "name": "How does additive manufacturing help in Aerospace applications?", "acceptedAnswer": { "@type": "Answer", "text": "Environmental control system (ECS) ducting, custom cosmetic aircraft interior components, rocket engine components, combustor liners, composite tooling, oil and fuel tanks, and UAV components are examples of typical applications. 3D printing helps in producing solid, complicated pieces with ease." } },{ "@type": "Question", "name": "Which aerospace firms use additive manufacturing/3D printing?", "acceptedAnswer": { "@type": "Answer", "text": "Boeing and Airbus are two of the many aircraft businesses that use additive-created parts in their planes. Boeing incorporates additive manufacturing (AM) components into both commercial and military aircraft. Airbus also employs AM metal braces and bleed pipes on the A320neo and A350 XWB aircraft." } }] }

Read More

2022: The Year of Robotics Industry Expansion

Article | November 12, 2021

Robotics industry growth has accelerated rapidly across several industries. It has aided manufacturers in overcoming numerous barriers related to real-time communication, workplace safety, and overall manufacturing cost and timeliness. However, if we trace its history back to 1961 when George Charles Devol introduced the first robot, dubbed 'UNIMATE,' it has exponentially grown and utilized across sectors to make operations more effortless, precise, and faster. “As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity.” – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca. However, the industry has seen snags or difficult times due to market fluctuations, unfavorable situations, and the need to remain competitive in the drive for expansion. To thoroughly understand the robotics industry, let us examine each component that surrounds it. Industrial Robotics Global Market Size According to recent Allied Market Research studies, the global industrial robotics market was worth $37,875 million in 2016 and is expected to reach $70,715 million by 2023, rising at a 9.4% compound annual growth from 2017 to 2023. Industrial Robotics Market Analysis The global industrial robotics market is primarily driven by a global increase in labor costs, which has compelled firms to replace human labor with robots. As a result, Asia and Europe are the world's fastest-growing areas, with top companies such as ABB, Fanuc, KUKA, Kawasaki, and Yaskawa Electric Corporation headquartered in the region. The global market of robotics has been segmented by its type, industry, and function. Type Industry Function Articulated Automotive Soldering and Welding Cartesian Electrical & Electronics Materials Handling SCARA Healthcare & Medicine Assembling & Disassembling Cylindrical Rubber & Plastics Painting and Dispensing Others if any Machinery & Metals Cutting and Processing Food & Beverages Milling Precision & Optics Others if any Others if any Industries That Are Pioneering the Use of Robotics As we have observed, the global robotic market will continue to rise in the future years. Therefore, let us examine which industries will extend their use of robotics in their operations. Healthcare & Medicine Medical robots help surgeons optimize hospital logistics and free up the working staff to focus on patients. In the healthcare field, robots are revolutionizing surgery by speeding supply delivery and disinfection and freeing up time for doctors to interact with their patients. da Vinci System – A General Surgical Robot The da Vinci System is a surgical robot that focuses on a wide range of urological, bariatric, and gynecological surgical treatments. In addition, Stryker's MAKO System also specializes in orthopedic surgery, specifically partial and total knee replacements. The da Vinci SP system is cleared for use in the United States exclusively for single-port urological procedures, lateral oropharyngectomy (often referred to as radical tonsillectomy), and tongue base excision. Law Enforcement Police robots are meant to gain access to areas inaccessible or dangerous to first responders, and they are capable of manipulating items and gathering data using several technologies. It encompasses robots capable of operating in various conditions and displaying a range of data and communication capabilities. Agriculture & Food Industry Farm equipment is now routinely equipped with sensors that utilize machine learning and robotics to identify weeds, compute the appropriate quantity of herbicide to spray, or learn to detect and pick strawberries, for instance. Additionally, in the food business, robotics has been used to do repetitive tasks such as picking and placing food items and cutting and slicing food items during any given food item. For instance, the modern bakery business uses robotics to perform traditional craft skills and produce any product in large quantities while maintaining high quality and hygiene standards. Transportation The transportation sector is highly leveraging robotics. The powerful transport capability, advanced control technology, and sensing precision are some of the benefits that make the transportation robots widely utilized in this sector. These benefits from robotics help the sector convey various commodities in factories, restaurants, and medical institutions, among other locations. Manufacturing Robots are employed in manufacturing to do repeated jobs and streamline the overall assembly process. Additionally, robots and humans can also collaborate on product making. Robots can replace humans for hazardous tasks or processes that need large quantities of materials, which might be hazardous for a human employee to handle. Factors Sustaining the Growth of the Robotics Industry Reduces Manufacturing Costs: Robotics application in all industries reduces the overall manufacturing process running costs. Improves Product Quality: The precision of robotics throughout the manufacturing process helps produce high-quality items that meet target client needs. Offers Competitive Market: Increased income due to utilizing the benefits of robotics applications makes any industry more competitive. Speed-ups Production Time: Robotics speeds up production and helps manufacturers increase output. Offers Task or Process Flexibility: Robotics can weld, cast, mold, assemble, machine, transfer, inspect, load, and unload items, among other duties. So, it gives the manufacturer process flexibility. Reduces Excessive Use and Waste of Production Materials: Robotics employs the exact quantity of material required for the manufactured product, reducing waste and overuse of materials. Offers a Safe Working Place: Robotics improves employee health and safety by performing tasks that humans find risky. For example, in the chemical industry, a human employee may not do a hazardous task. In such instances, robots can replace people. Final Words The rise of the robotics industry has accelerated dramatically, and it is now spreading its wings across industries. Research firm IDC provided a projection for the commercial robot market, forecasting that the market will exceed $53 billion by 2022, with a compound annual growth rate of more than 20%. In addition, several advantages of robotics such as safety, productivity, uniformity, and perfection are pushing its expansion and making it an essential element of industry 4.0. FAQs Why are robots the future of the manufacturing industry? The use of robots in manufacturing has improved process efficiency and product quality. As a result, robots are gaining favor in production and becoming the future of manufacturing. Which industries make the most use of robotics? Healthcare, agriculture, food, and manufacturing are the industries that are embracing robotics to get the most out of it. How is manufacturing utilizing robotics? Manufacturing uses robotics for repetitive tasks. This helps in the reduction of errors and human efforts. It also improves production efficiency. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "Why are robots the future of the manufacturing industry?", "acceptedAnswer": { "@type": "Answer", "text": "The use of robots in manufacturing has improved process efficiency and product quality. As a result, robots are gaining favor in production and becoming the future of manufacturing." } },{ "@type": "Question", "name": "Which industries make the most use of robotics?", "acceptedAnswer": { "@type": "Answer", "text": "Healthcare, agriculture, food, and manufacturing are the industries that are embracing robotics to get the most out of it." } },{ "@type": "Question", "name": "How is manufacturing utilizing robotics?", "acceptedAnswer": { "@type": "Answer", "text": "Manufacturing uses robotics for repetitive tasks. This helps in the reduction of errors and human efforts. It also improves production efficiency." } }] }

Read More

Spotlight

Spartan Motors, Inc.

At Spartan Motors, we know the road our customers face and travel. From our beginnings in custom chassis engineering to our emergence in specialized vehicle design, custom manufacturing, and contract assembly, we combine expertise in what best fits beneath your vehicle with the ability to fully optimize what sits above it.

Events