Power users: full integration of multiple 3D printing materials and technologies

JESSICA VAN ZEIJDERVELD| July 03, 2018
POWER USERS: FULL INTEGRATION OF MULTIPLE 3D PRINTING MATERIALS AND TECHNOLOGIES
We’ve already reached the fifth part of our analysis on our State of 3D Printing! This analysis will give you detailed insights on the development of additive manufacturing related to specific aspects such as when we analyzed the job market, material usage or on how businesses use 3D printing. In this fifth part, we will show you how power users have been using additive manufacturing compared to regular users.

Spotlight

KME

KME and its employees have a passion to provide the safest, most reliable and highest performing vehicles to serve our first responders in protecting our communities. KME has delivered over 10,000 vehicles to markets around the globe and each one is assigned a primary point of contact to coordinate all communications between all departments within KME, the dealer, and the customer. These project managers ensure a “customer first” focus from order through delivery, every time.

OTHER ARTICLES

Additive Manufacturing: A Ground-breaking Change to Empower Industry 4.0

Article | November 20, 2021

Advanced manufacturing enables the concept of industry 4.0 and represents a significant milestone in the manufacturing industry. Additive manufacturing is a critical component of the industry 4.0 concept, propelling the industry to new heights of innovation. In various fields that are not immediately related to industry 4.0 or manufacturing, additive manufacturing has alternatively been referred to as 3D printing. The numerous advantages of additive manufacturing, such as reduced cost and time, are boosting its popularity and use in manufacturing and other industries. “Digital technology is so empowering on so many fronts, but for it to be empowering, it must be for everyone.” – Michael Walton, Director, Industry Executive (Manufacturing) at Microsoft. The global market of additive manufacturing is anticipated to increase at a 14.42 percent compound annual growth rate from USD 9.52 billion in 2020 to USD 27.91 billion in 2025. According to this market research, the future of 3D printing or additive manufacturing is quite bright in the coming years, and we will see widespread application across industries. First, let us understand the idea of additive manufacturing and its benefits to various industries. Concept of Additive Manufacturing Additive manufacturing is building a real thing from a three-dimensional computer model, often by successively layering a material. This technique utilizes computer-aided design (CAD) software or 3D object scanners to command devices to deposit material in exact geometric shapes layer by layer. As the name implies, additive manufacturing involves the addition of material to produce an object. Additive Manufacturing Benefits Produces Fewer Scraps and Trash When we compare additive manufacturing to traditional manufacturing techniques such as milling or turning, additive manufacturing adds only the amount of material required to build a product. As a result, it generates less waste and conserves scarce resources. Reduces the Time and Cost of Prototyping Making a product prototype is now faster, easier, and cheaper. Other production processes, like milling, have high setup and material costs. Prototyping is less expensive and takes less time, so you can quickly produce, test, and modify. It also shows practically instant verification of progress done. It Encourages the Digitalization of Businesses Continuous and effective communication between devices, machines, and robots is required for additive manufacturing. However, this is only achievable with effective digitization of production processes. As a result, businesses invest more in digital and IoT, a prerequisite for Industry 4.0. It Simplifies the Assembling Process by Condensing it into a Single Component Additive manufacturing in Industry 4.0 also simplifies the production process, especially product assembly. A traditional component requires numerous manufacturing procedures. This increases material and labor expenses as well as production time. However, additive manufacturing allows you to print the group in one piece. The Top Three Industries That Make the Most Use of Additive Manufacturing Additive manufacturing is presently used in a variety of industries. However, specific sectors make the best use of it. Thus, we will examine the industries embracing additive manufacturing technology and emerging with new life easing solutions. Healthcare In the healthcare industry, dentistry is the critical application of additive manufacturing. Technology helps it create bridges, crowns, braces, and dentures, always in high demand. Additive manufacturing has also been used to create tissues and organs, surgical tools, patient-specific surgical models, and personalized prosthetics. For example, many medical equipment companies employ 3D printing to build patient-specific organ replicas that surgeons can practice before completing complex surgeries. Aerospace Additive manufacturing is utilized to fabricate metal brackets that serve as structural components within airplanes. Prototypes are increasingly being printed in three dimensions, allowing designers to fine-tune the shape and fit of finished parts. In addition, interior airplane components such as cockpit dashboards and door handles are manufactured using 3D printing services. Automotive 3D printing can manufacture molds and thermoforming tools, grips, jigs, and fixtures for the automotive industry. Automakers utilize additive printing to customize parts for specific vehicles or drivers (e.g., seats for racing cars). An appealing colored dashboard, efficient fuel systems, and complicated braking mechanisms are all possible with 3D printing in the automotive industry. Therefore, it is best suited for pre-production, manufacture, and modification of automotive parts. How Does NASA use additive manufacturing in its space projects? The space environment has always been unpredictable, and scientists must be adequately prepared before embarking on any space mission. They must consider the durability and weight of all the objects they propose to transport into space. To land any object on a planet that does not have a flat surface or similar weather conditions to earth, scientists must design each object with these considerations in mind. “You always want it to be as light as possible, but you also want it to be strong enough.” -Chris Chapman, NASA Test Engineer It is not conceivable to make items capable of dealing with all the changes on other planets and achieving these project objectives using conventional materials and production processes. However, scientists do require a technique that will enable them to manufacture lighter and stronger objects for their space missions. 3D printing has played a significant part in meeting this demand and has provided space projects to manufacture objects that would withstand any unexpected events during space missions. For example, NASA employed 3D-printed metal components in their Mars project. NASA's specialized engineers are utilizing additive manufacturing to create rocket engines and possible Moon and Mars outposts. NASA used the 11 3D printed metal components on its Mars mission as well. It employed 3D printed components for the first time in the Curiosity rover, which landed on Mars in 2012. It was a successful project, and NASA has since begun employing 3D printed parts in its space missions to make machines lighter while remaining robust and functional. Final Words Additive manufacturing technology is making a real difference in the manufacturing process, and it is becoming the trending technology in the manufacturing industry. The benefits of additive manufacturing make the manufacturing process more advanced, easy, and customer-oriented. Additive manufacturing is the major transformation in the manufacturing industry and will take it to new heights of precision. FAQ Why is additive manufacturing critical? Additive manufacturing reduces the time and cost of prototyping and reduces the scraps amount during the manufacturing process of any object. In addition, it simplifies multiple processes from various industries. Are additive manufacturing and 3D printing the same? Yes, additive manufacturing and 3D printing are the same processes with different names as per the choice of the different industries. For example, in some industries such as space missions, It is also referred to as Fused Deposition Modelling (FDM). Which is the most applied sector for additive manufacturing? Healthcare is the industry that utilizes additive manufacturing technology the most. It also helps medical practitioners practice surgery on any critical body part with its 3D printed model from human tissues. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "Why is additive manufacturing critical?", "acceptedAnswer": { "@type": "Answer", "text": "Additive manufacturing reduces the time and cost of prototyping and reduces the scraps amount during the manufacturing process of any object. In addition, it simplifies multiple processes from various industries." } },{ "@type": "Question", "name": "Are additive manufacturing and 3D printing the same?", "acceptedAnswer": { "@type": "Answer", "text": "Yes, additive manufacturing and 3D printing are the same processes with different names as per the choice of the different industries. For example, in some industries such as space missions, It is also referred to as Fused Deposition Modelling (FDM)." } },{ "@type": "Question", "name": "Which is the most applied sector for additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Healthcare is the industry that utilizes additive manufacturing technology the most. It also helps medical practitioners practice surgery on any critical body part with its 3D printed model from human tissues." } }] }

Read More

Manufacturing Production Planning and Control: What, Why, and How?

Article | January 3, 2022

Production planning and control are critical components of any manufacturing organization. It helps organizations with the regular and timely delivery of their goods. Furthermore, it allows manufacturing businesses to increase their plant’s efficiency and reduce production costs. Numerous software and tools for production scheduling and planning are available on the market, including Visual Planning, MaxScheduler, and MRPeasy, which assist manufacturing organizations in planning, scheduling, and controlling their production. According to KBV Research, the manufacturing operations management software market is anticipated to reach $14.6 billion by 2025 globally, expanding at a market growth of 10.2 percent CAGR during the forecast period. So, what exactly is production planning and control? Production planning is an administrative process within a manufacturing business. It ensures that sufficient raw materials, personnel, and other necessary items are procured and prepared to produce finished products according to the specified schedule. Scheduling, dispatch, inspection, quality control, inventory management, supply chain management, and equipment management require production planning. Production control makes sure that the production team meets the required production targets, maximizes resource utilization, manages quality, and saves money. “Manufacturing is more than just putting parts together. It’s coming up with ideas, testing principles and perfecting the engineering, as well as final assembly.” – James Dyson In oversize factories, production planning and control are frequently managed by a production planning department, which comprises production controllers and a production control manager. More significant operations are commonly monitored and controlled from a central location, such as a control room, operations room, or operations control center. Why Should You Consider Production Planning? An efficient production process that meets the needs of both customers and the organization can only be achieved through careful planning in the early stages of production. In addition, it streamlines both customer-dependent and customer-independent processes, such as on-time delivery and production cycle time. A well-designed production plan minimizes lead time, the period between placing an order and its completion and delivery. The definition of lead time varies slightly according to the company and the type of production planning required. For example, in supply chain management, lead time refers to the time required for parts to be shipped from a supplier. Steps in Production Planning and Control Routing The first stage of production planning determines the path that raw materials will take from their source to the finished product. You will use this section to determine the equipment, resources, materials, and sequencing used. Scheduling It is necessary to determine when operations will occur during the second stage of production planning. In this case, the objectives may be to increase throughput, reduce lead time, or increase profits, among other things. Numerous strategies can be employed to create the most efficient schedule. Dispatching The third and final production control stage begins when the manufacturing process is initiated. When the scheduling plan is implemented, materials and work orders are released, and work is flowing down the production line, the production line is considered to be running smoothly. Follow-Up The fourth stage of manufacturing control ascertains whether the process has any bottlenecks or inefficiencies. You can use this stage to compare the predicted run hours and quantities with the actual values reported to see if any improvements can be made to the processes. Production Planning Example Though production planning is classified into several categories, including flow, mass production, process, job, and batch, we will look at a batch production planning example here. Manufacturing products in batches is known as "batch production planning." This method allows for close monitoring at each stage of the process, and quick correction since an error discovered in one batch can be corrected in the next batch. However, batch manufacturing can lead to bottlenecks or delays if some equipment can handle more than others, so it's critical to consider capacity at every stage. Example Consider the following example of batch production planning: Jackson's Baked Goods is in the process of developing a production plan for their new cinnamon bread. To begin with, the head baker determines the batch production time required by the recipe. He then adjusts the bakery's weekly ingredient orders to include the necessary supplies and schedules the weekly cinnamon bread bake during staff downtime. Finally, he creates a list of standards for the bakery staff to check at each production stage, allowing them to quickly identify any substandard materials or other batch errors without wasting processing time on subpar cinnamon bread. Final Words Running a smooth and problem-free manufacturing operation relies heavily on a precise production planner. Many large manufacturing companies already have a strong focus on streamlining their processes and making the most of every manufacturing operation, but small manufacturing companies still have work to do in this area. As a result, plan, schedule, and control a production that will enable you to run your business in order to meet its objectives. FAQ What is the difference between planning and scheduling in production? Production planning and scheduling are remarkably similar. But, it is critical to note that planning determines what operations need to be done and scheduling determines when and who will do the operations. What is a production plan? A product or service's production planning is the process of creating a guide for the design and manufacture of a given product or service. Production planning aims to help organizations make their manufacturing processes as productive as possible.

Read More

How Manufacturing Digitalization Benefits Businesses in 2022

Article | December 14, 2021

The manufacturing industry has evolved to new heights of innovation, productivity, and excellence with digital transformation. Manufacturing digitalization has made operational procedures more skilled, accurate, and time-savvy. “Many companies simply are not willing to change or think they are done once they make a change. But the truth is technology; consumer demands, the way we work, human needs and much more are constantly changing.” Michael Walton, Director, Industry Executive (Manufacturing) at Microsoft With a CAGR of 19.48 percent between 2021 and 2026, the digital transformation in the manufacturing market is expected to reach USD 263.93 billion by 2026. Manufacturing plants adopt digital technology to improve, automate, and modernize processes as part of Industry 4.0. So, what are the key benefits of digitalization for manufacturers? This article will elaborate on the top five benefits of digital manufacturing transformation. How to Define Digital Manufacturing? Manufacturing digital transformation involves integrating digital technologies into processes and products to improve manufacturing efficiency and quality. Manufacturing's digital transformation aims to increase operational efficiency and reduce expenses. The digital transformation techniques ensure product quality. It also makes work more efficient, safe, and stress-free. What Is Included in Manufacturing Digitization (Industry 4.0)? Industry 4.0 is the digitalization of manufacturing. Cyber-physical systems, IoT, and cloud computing are current trends in manufacturing automation and data exchange. Connected devices, cloud computing power, and the modern emphasis of lean, efficient operations enable Industry 4.0 to construct advanced and innovative smart factories. Industry 4.0 includes design, sales, inventories, scheduling, quality, engineering, customer and field service. Five Benefits of Digital Transformation in Manufacturing Manufacturing organizations can benefit from digitalization in a variety of ways. It can help make the work more efficient, decentralized, and secure. It further creates new business opportunities and attracts new talent to the industry. Additionally, integrating products into a digital ecosystem increases their value and appeal. Let’s dig deeper into each of the five key benefits. Reduces Costs Technology is an invaluable companion in reducing the manufacturing company's expenses in the future. The incorporation of digital technology results in the transformation of procedures and the digitization of documents, resulting in overall process optimization. Therefore, a reduction in labor costs might be expected as a result of the elimination of unnecessary expenditures. Additionally, digitization enables businesses to assess and estimate expenses considerably more precisely, ensuring that budgets stay on track. Additionally, it eliminates andsubstitutes inefficient jobs within processes, significantly increasing their efficiency. This efficiency is translated into time savings, which results in a substantially more cost-effective manufacturing process. Decentralized Production Manufacturing digital transformation allows organizations to supervise manufacturing remotely, allowing production to continue uninterrupted. In rare cases like Covid-19, digitalized businesses have not had to cease or even slow down production. These systems can work without interruptions for much longer than any worker. Digitalization also boosts methodology flexibility and reactivity. For example, if a production plant has a problem, an automatic alert is generated, and the issue is resolved regardless of the day, time, or presence. Improved Operational Efficiency Smart product connectivity allows devices to connect and communicate with each other (M2M). This connectivity enables decentralized decision-making. Many duties no longer require an employee to be physically present. New manufacturing and production models minimize boring, risky activities while increasing accuracy, efficiency, and responsiveness. Transforming businesses through digital means making better decisions based on real-time data. Training, changes, and repairs are no longer issues due to reduced frequency and automation. New Business Opportunities New digital technologies enable the manufacture of previously unviable products and services, generating new revenue streams. Also, new services (innovation or reorientation) are launched considerably faster. Companies may utilize big data and AI to experiment, anticipate trends, and predict about new advancements. These technologies can help organizations become more eco-friendly and create products that are less detrimental to our environment. Attracts New Talent Professionals with fundamental talents in this complicated and disruptive environment are drawn to digitalizedorganizations that are up-to-date with trends and processes. Also, if the change is managed well, it will lead to higher profitability, increasing employee satisfaction. Human motivation, along with excellent digital technologies, will reflect in the company's production and profitability. Dusseldorf@Germany: The Deloitte Digital Factory The digital factory in Dusseldorf provides a flexible setting for innovative workshops and training, bringing together the old and new worlds of supply chain and industrial operations to provide a seamless experience. Specific use case examples, as well as the digital solutions sector, will motivate and encourage businesses to get on their digital transformation journeys, making use of the most up-to-date technologies in the process. Final Words Manufacturing digitalization has a lot to offer the industry, and many manufacturers are capitalizing on this new phase of the industrial revolution by incorporating cutting-edge technologies into manufacturing and business operations. As said previously, the benefits of digital transformation in the manufacturing business are increasing the importance of digitalization in the industry. Transform your traditional manufacturing operating processes with these new manufacturing trends and observe the results that other benefitting manufacturing businesses have achieved. FAQ Why is digitalization vital in manufacturing? Manufacturing process digitization improves overall business performance. But the results are seen across the factory. Digital transformation improves working conditions for employees and streamlines daily operations. How are digitization and digitalization different? Digitalization is a transformation of data and processes. Digitalization is the use of digital technologies to collect data, identify patterns, and make better business decisions. How digital technologies are applied in manufacturing? Digital manufacturing technologies enable the integration of systems and processes across all stages of production, from design to production and beyond.

Read More

4 Ways Additive Manufacturing Will Optimize Electronics

Article | May 25, 2021

Additive manufacturing offers the potential to accelerate the pace of electronics manufacturing by creating a number of unique opportunities, such as the ability to combine multiple materials in single print jobs. The technology is also much more accessible than it previously was. Plus, it enables faster prototyping, which could speed the time to market and prevent costly mishaps that disrupt the production process. Here’s a look at some of the many benefits additive manufacturing brings to the electronics sector. One Giant Leap Adoption rates for electronics made with additive manufacturing will continue to climb as people realize its versatility. Thanks to a new project associated with students at Embry-Riddle Aeronautical University, we could see materials made with additive manufacturing are as well-suited for use in space as on Earth.

Read More

Spotlight

KME

KME and its employees have a passion to provide the safest, most reliable and highest performing vehicles to serve our first responders in protecting our communities. KME has delivered over 10,000 vehicles to markets around the globe and each one is assigned a primary point of contact to coordinate all communications between all departments within KME, the dealer, and the customer. These project managers ensure a “customer first” focus from order through delivery, every time.

Events