Modern Obstacles of Automotive Electronics Manufacturing in Digital Age

ANAND BALAKRISHNA| February 04, 2020
MODERN OBSTACLES OF AUTOMOTIVE ELECTRONICS MANUFACTURING IN DIGITAL AGE
Innovation in electronics is enabling rapid growth of all electronics segments such as automotive, consumer, industrial and strategic electronics. This is well reflected in the automotive electronics industry. Today’s car will have more than 50 electronic systems just for monitoring and controlling purposes, as well as additional electronic systems such as engine electronics, driver assistance, infotainment, passenger comfort and many more.

Spotlight

Signavio

Signavio enables organizations to keep up with the pace, volume and complexity of change. Our Business Transformation Suite is the smarter way to continuously translate between strategy and execution. Headquartered in Berlin with offices in the US, UK, Australia, France, Singapore, and Switzerland, Signavio serves more than 1000 customers around the globe across all industries.

OTHER ARTICLES

Manufacturing Has the Lowest Percentage of High-Severity Flaws but Needs to Improve Time to Remediation

Article | March 30, 2021

The past 12 months have been especially challenging for the manufacturing industry. The pandemic affected in-person manufacturing jobs as well as supply and demand, causing many manufacturing companies to shut their doors or lay off valuable employees. Recognizing the vulnerable state of manufacturing companies, cybercriminals saw manufacturing as an easy target. In fact, the manufacturing industry saw an 11 percent increase in cyberattacks in 2020. And even more concerning, our recent State of Software Security v11 (SOSS) report found that, when compared to other industries, the manufacturing industry ranks last for fix-rate and median time to remediate security flaws. That means that the manufacturing industry has security flaws in applications that aren???t getting resolved in a timely manner. And more lingering flaws mean more opportunity for a cyberattack.

Read More

The Future of Additive Manufacturing: Trends and Predictions

Article | January 21, 2022

3D printing technology and its role in future manufacturing are grabbing the interest of industry experts. In terms of elevating future products, future additive manufacturing has a lot to offer the business. Additive manufacturing is developing and stretching its wings on a daily basis, becoming an integral part of every industry, including manufacturing, healthcare, education, and more. In this article, we'll shed some light on the 3D printing future trends, which will assist the business in deepening its impact across industries. Furthermore, we will explore whether the additive manufacturing business is worth investing in as well as who the major players are that have already invested in the future of 3D printing. Future Trends in the Additive Manufacturing Industry Enhanced Machine Connectivity Making AM solutions (including software and hardware) easier to integrate and connect to the factory floor is one of the key AM trends we predict to advance in the coming years. It has been a long time since the AM hardware market has been filled with closed, or proprietary, systems. These systems generally function with materials and software given or approved by the machine OEM and are not easily integrated with third-party alternatives. Closed systems are important for process dependability, but they also restrict collaboration and connectivity. Companies expanding their AM operations will need to connect their machines and software to their production environments. When it comes to additive manufacturing, using siloed solutions is a surefire way to fail. Importantly, we see hardware manufacturers increasingly focusing on solutions that can be integrated with the production floor. For example, a 3D printing market leader like Stratasys is a good illustration of the trend. In December, the business announced an extension of its previously closed machines' connection.Consumers may now integrate and control their additive production using software programs of their choosing, not just Stratasys' systems. For AM facilities, system connectivity is no longer an option. It's exciting to see the AM industry players recognize and solve this requirement. AM and AI Continue to Converge AM growth is incorporating AI and machine learning. AI can help with material development, machine setup, part design, and workflow automation. So, in the future, we anticipate seeing more AI and AM technology integration. Combined with AM systems, AI will improve process control and accuracy. For example, Inkbit is currently working on an AI-powered polymer vision system. This technology can scan 3D printing layers and anticipate material behavior during printing. Generative design, already generally recognized as a key digital advance in AM, may tremendously benefit from AI and machine learning. It has so far been utilized to improve load routes when strength and stiffness are dominant. It can also be utilized to optimize thermal or vibration. AI and machine learning will advance generative design, allowing new concepts to be completely suited to AM.While we may be a few years away from fully developing the capacity to automatically adapt designs to process, we anticipate significant breakthroughs this year that will bring us closer. AM Will Drive Decentralization In order to future-proof their supply chains, many manufacturers are following new supply chain models and technology that allow them to cut prices or switch goods more easily. Increasing flexibility and agility will necessitate distributed, localized production, assisted by additive manufacturing.To reduce the number of steps required to manufacture complex metal or polymer structures, shorten lead times, and enable digital inventory management, digital inventory management can be automated. These advantages make it ideal for the distributed manufacturing model. We believe that in the near future, more businesses will actively explore distributed manufacturing with AM. According to a recent HP survey, 59% of organizations are now considering hybrid models, while 52% are looking into localized digital manufacturing. 3D Printing Future: Major Predictions In Jabil's 2021 3D printing trends survey of over 300 decision-makers, 62% of participants claim their organization is actively using additive manufacturing for production of their product components, up from 27% in 2017. Many such manufacturers are on the lookout for the latest additive manufacturing trends and forecasts. So let's begin. Increasing Flexibility and Customization Customized goods are a popular consumer trend, impacting several sectors. Rather than buying a mass-produced item, customers are increasingly demanding a custom-made item that meets their specific needs. Additive manufacturing's low-volume production capabilities simply enable personalization and customization. 3D printing allows for more responsive design options, particularly for additive manufacturing. Manufacturers can afford to make smaller batches, allowing designers and engineers to alter product ideas and develop them cost-effectively when inspiration strikes, the public mood is understood, or customer feedback drops in. Materials Drive the Future of Digital As the additive manufacturing ecosystem grows, the importance of materials cannot be overstated. Besides high equipment costs, materials and limited additive manufacturing ecosystems have hindered the 3D printing industry's growth. The market is flooded with 3D printing materials, but few are advanced enough to fulfill industry standards.Due to volume constraints in most sectors, suppliers and manufacturers aren't motivated to develop innovative materials for new uses. However, the future of 3D printing is in engineered and application-specific materials. Various sectors have unique difficulties that demand unique solutions. New designed materials will revolutionize new uses, including highly regulated sectors. Industries will reward those who can promptly introduce 3D printing materials adapted to specific industrial and engineering needs. This will allow more 3D printing applications to be supplied and the whole digital manufacturing flywheel to start spinning. 3D Printing and a Sustainable Future Finally, additive manufacturing promotes sustainability and conservation. Besides decreasing trash, 3D printing saves energy. The Metal Powder Industries Federation studied the difference between making truck gear using subtractive manufacturing (17 steps) and additive manufacturing (6 steps). 3D printing uses less than half the energy it takes to produce the same product. 3D printing also reduces the need for moving products and materials, reducing the amount of carbon emitted into the environment. So we can see that digital and additive solutions already contribute to a more sustainable future. Is Investment in the Future of Additive Manufacturing Worth It? In recent years, there has been an explosion of investment in industrial 3D printing. Hundreds of millions of dollars have flowed into the industry in recent years, assisting new businesses. Desktop Metal ($160 million), Markforged ($82 million), and 3D Hubs ($18 million) have all received significant funding in the past. According to a recent report and data analysis, the global additive manufacturing market will hit USD 26.68 billion by 2027. A rising level of government support for additive manufacturing across regions is driving market demand. For example, America Makes, the foremost national initiative in the US since 2012 dedicated to additive manufacturing (3D printing future technology), received USD 90 million in support from the government, commercial, and non-profit sectors. Given the industry's expenditures and the expanding need for 3D printing, investing in the additive manufacturing industry or 3D printing is certainly encouraged. Final Words Additive manufacturing is being used in practically every industry, and companies are researching how technology might be used in their specific fields. The numerous advantages and sustainability that 3D printing provides are the major benefits that manufacturers and other industry professionals notice with 3D printing.Future manufacturing will be significantly more accurate and simple to run thanks to 3D printing technologies. Considering the trends and projections listed above, you may have a better understanding of 3D printing's future and make an informed investment decision. FAQ What is the future of 3D printing? 3D printing, or additive manufacturing, has the potential to empower everything from food to coral reefs. 3D printers may soon be seen in homes, companies, disaster zones, and perhaps even outer space. Why is 3D printing important to society? 3D printing results in waste reduction and so eliminates the need for periodic waste reduction, reuse, and recycling. So it helps society with no carbon footprint. Why is it known as additive manufacturing? The term "additive manufacturing" refers to the fact that the building process adds layers rather than removes raw materials.

Read More

Computer Aided Manufacturing (CAM): Major Challenges and Their Solutions

Article | December 16, 2021

Computer-aided manufacturing (CAM) is a technology that revolutionized the manufacturing business. Pierre Bézier, a Renault engineer, produced the world's first real 3D CAD/CAM application, UNISURF CAD. His game-changing program redefined the product design process and profoundly altered the design and manufacturing industries. So, what is CAM in its most basic definition? Computer-aided manufacturing (CAM) is the application of computer systems to the planning, control, and administration of manufacturing operations. This is accomplished by using either direct or indirect links between the computer and the manufacturing processes. In a nutshell, CAM provides greater manufacturing efficiency, accuracy, and consistency. As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity.” – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca In light of the numerous advantages and uses of computer-aided manufacturing, manufacturers have opted to use it extensively. The future of computer-aided manufacturing is brightening due to the rapid and rising adoption of CAM. According to Allied Market Research, the global computer-aided manufacturing market was worth $2,689 million in 2020 and is expected to reach $5,477 million by 2028, rising at an 8.4% compound annual growth rate between 2021 and 2028. Despite all this, each new development has benefits and challenges of its own. In this article, we'll discuss the benefits of CAM, the challenges that come with it, and how to deal with them. Let's start with the advantages of computer-aided manufacturing. Benefits of Computer Aided Manufacturing (CAM) There are significant benefits of using computer-aided manufacturing (CAM). CAM typically provides the following benefits: Increased component production speed Maximizes the utilization of a wide variety of manufacturing equipment Allows for the rapid and waste-free creation of prototypes Assists in optimizing NC programs for maximum productivity during machining Creates performance reports automatically As part of the manufacturing process, it integrates multiple systems and procedures. The advancement of CAD and CAM software provides visual representation and integration of modeling and testing applications. Greater precision and consistency, with similar components and products Less downtime due to computer-controlled devices High superiority in following intricate patterns like circuit board tracks Three Challenges in CAM and Their Solutions We have focused on the three primary challenges and their solutions that we have observed. Receiving Incomplete CAD Updates Receiving insufficient CAD updates is one of the challenges. If, for example, the part update from a CAD engineer does not include the pockets that are required in the assembly, to the CAM engineer. SOLUTION: A modeler that enables developers of a CAM programs to create intuitive processes for features such as feature extraction and duplication across CAD version updates. A modeler is capable of recognizing and extracting the pocket's architecture and the parameters that define it. Additionally, the CAM application can enable the engineer to reproduce the pocket in a few simple steps by exploiting the modeler's editing features such as scaling, filling, extruding, symmetrical patterning, and removing. Last Minute Design Updates The second major challenge is last-minute design changes may impact manufacturers as a result of simulation. SOLUTION: With 3D software components, you may create applications in which many simulation engineers can work together to make design modifications to the CAD at the same time, with the changes being automatically merged at the end. Challenging Human-driven CAM Manufacturing The third major challenge we have included is that CAM engineers must perform manual steps in human-driven CAM programming, which takes time and requires expert CAM software developers. Furthermore, when the structure of the target components grows more complicated, the associated costs and possibility of human failure rise. SOLUTION: Self-driving CAM is the best solution for this challenge. Machine-driven CAM programming, also known as self-driving CAM, provides an opportunity to improve this approach with a more automated solution. Preparing for CAM is simple with the self-driving CAM approach, and it can be done by untrained operators regardless of part complexity. The technology handles all of the necessary decisions for CAM programming operations automatically. In conclusion, self-driving CAM allows for efficient fabrication of bespoke parts, which can provide substantial value and potential for job shops and machine tool builders. Computer Aided Manufacturing Examples CAM is widely utilized in various sectors and has emerged as a dominant technology in the manufacturing and design industries. Here are two examples of sectors where CAM is employed efficiently and drives solutions to many challenges in the specific business. Textiles Virtual 3D prototype systems, such as Modaris 3D fit and Marvellous Designer, are already used by designers and manufacturers to visualize 2D blueprints into 3D virtual prototyping. Many other programs, such as Accumark V-stitcher and Optitex 3D runway, show the user a 3D simulation to show how a garment fits and how the cloth drapes to educate the customer better. Aerospace and Astronomy The James Webb Space Telescope's 18 hexagonal beryllium segments require the utmost level of precision, and CAM is providing it. Its primary mirror is 1.3 meters wide and 250 kilograms heavy, but machining and etching will reduce the weight by 92% to just 21 kilograms. FAQ What is the best software for CAM? Mastercam has been the most extensively utilized CAM software for 26 years in a row, according to CIMdata, an independent NC research business. How CAD-CAM helps manufacturers? Customers can send CAD files to manufacturers via CAD-CAM software. They can then build up the machining tool path and run simulations to calculate the machining cycle times. What is the difference between CAD and CAM? Computer-aided design (CAD) is the process of developing a design (drafting). CAM is the use of computers and software to guide machines to build something, usually a mass-produced part.

Read More

Three Business Examples That Effectively Practice Lean Manufacturing

Article | December 13, 2021

Lean manufacturing principles enable manufacturing businesses to achieve spectacular results and overhaul their conventional operations. A wide range of industries have adopted lean manufacturing because of its enormous advantages, and they have seen excellent results as a result. The 2010 Compensation Data Manufacturing survey indicated that 69.7% of manufacturing organizations employ lean manufacturing principles. By consuming this data, we can understand how far organizations have progressed toward incorporating lean principles into their operations. “Many companies are not willing to change or think they are done once they make a change. But the truth is technology, consumer demands; the way we work, human needs, and much more are constantly changing.” –Michael Walton, Director, Manufacturing Industry Executive at Microsoft Let's look at some examples of lean manufacturing from some well-known companies. These leading-edge examples of lean manufacturing will shed light on how lean principles positively affect. Leading Companies Using Lean Manufacturing Effectively Successful manufacturing businesses like Toyota, Nike, and Caterpillar are currently employing lean manufacturing ideas in their production processes. In addition, Intel, Parker Hannifin, and John Deere embrace these techniques. From them, we've described three different organizations in various sectors that are successfully adopting lean manufacturing. JOHN DEERE John Deere has also implemented a lean manufacturing strategy. As a result, many of their quality control procedures are automated, which means that more components can be checked for flaws in less time. This means that more supply can be released each day, and the product can be supplied at a lower price to the consumer. Additionally, these controls monitor the manufacturing process for each component of their products, ensuring that they never manufacture more than is required and waste essential materials in the process. INTEL Intel, known for its computer processors, has used lean manufacturing techniques to provide a higher quality product for an industry that requires zero defects. In the past, it took more than three months to get a microprocessor to the manufacturer, but this principle has helped shorten that time to less than ten days. Intel rapidly learned that creating more but worse quality was not the way to raise revenues and increase consumer satisfaction with its products, which were extremely precise and technical. Instead, both parties gain from quality control and waste reduction initiatives. This is even true in the tech industry, where goods are constantly changed and upgraded. TOYOTA Toyota, the world's largest automaker, was the first to implement lean manufacturing in its manufacturing operations. But, even more importantly, they've learned how to limit products that don't match customer expectations by eliminating waste. To achieve these goals, Toyota employs two essential procedures. The first is a method known as Jidoka, which loosely translates as "automation with the assistance of humans." This implies that, although some of the work is automated, humans always ensure that the result is of the highest quality. When something goes wrong, the machines have built-in programs that allow them to shut themselves down. Known as the Just In Time (JIT) model, this is the second stage. Once the last part of a process has been finished, the next phase can begin. No unnecessary work will be done if there is a problem with the assembly line. This lean manufacturing technique has inspired thousands of other businesses. Final Words Lean manufacturing principles and their execution require discipline and patience to get the results out of them. When we see the successful lean manufacturing examples, it is not a fraction of a second success. They have devoted their time, energy, and efforts to modifying every single operational process in order to become a part of lean manufacturing. Lean manufacturing is not a method; it is a way of life that transforms your business practices and takes your firm to a new level of operations. Gain insights from renowned organizations' lean manufacturing success stories to help you become a part of the lean companies of 2022. FAQ What is the effect of lean manufacturing? Lean is a performance-based, continuous-improvement strategy that removes waste and unnecessary processes from organizational operations. As a result, your company becomes more focused on the results. Is it possible for lean manufacturing to fail? It is conceivable in some circumstances, such as failing to focus on a single system implementation or implementing too many system changes at once and failing to have a sound follow-up system to check that everything is working effectively. Why do certain businesses struggle with lean manufacturing? Most businesses fail to see that lean is a management philosophy, not a set of tools. As a result, most corporate leaders either don't understand or lack the patience and control to implement lean manufacturing. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What is the effect of lean manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Lean is a performance-based, continuous-improvement strategy that removes waste and unnecessary processes from organizational operations. As a result, your company becomes more focused on the results." } },{ "@type": "Question", "name": "Is it possible for lean manufacturing to fail?", "acceptedAnswer": { "@type": "Answer", "text": "It is conceivable in some circumstances, such as failing to focus on a single system implementation or implementing too many system changes at once and failing to have a sound follow-up system to check that everything is working effectively." } },{ "@type": "Question", "name": "Why do certain businesses struggle with lean manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Most businesses fail to see that lean is a management philosophy, not a set of tools. As a result, most corporate leaders either don't understand or lack the patience and control to implement lean manufacturing." } }] }

Read More

Spotlight

Signavio

Signavio enables organizations to keep up with the pace, volume and complexity of change. Our Business Transformation Suite is the smarter way to continuously translate between strategy and execution. Headquartered in Berlin with offices in the US, UK, Australia, France, Singapore, and Switzerland, Signavio serves more than 1000 customers around the globe across all industries.

Events