Manufacturing Day: What's the Point?

PATTY RASMUSSEN| October 05, 2017
MANUFACTURING DAY: WHAT'S THE POINT?
It’s safe to say that manufacturing and the issues that surround it are even more important today than they were when Manufacturing Day (MFG DAY) was inaugurated in 2012. The themes of jobs, workforce education, the skills gap, trade, taxes, and infrastructure were regularly trumpeted during the 2016 presidential campaign and they continue to dominate discussions at the federal, state and local level.

Spotlight

Concept Laser

Concept Laser GmbH was founded in 2000 by Frank Herzog and is one of the world’s leading providers of machine and plant technology for 3D printing of metal parts. In December 2016, Concept Laser joined GE Additive, a division of the world's leading digital industrial enterprise, General Electric (GE). GE Additive was founded in 2016 and acquired a 75% stake in Concept Laser, among others.

OTHER ARTICLES

Scaling, Optimizing & Pivoting with Smart Manufacturing Industry 4.0

Article | January 20, 2022

A smart factory that leverages Industry 4.0 concepts to elevate its operations has long been a model for other industries that are still figuring out how to travel the digital manufacturing route. Smart manufacturing technology is all you need to know if you're looking to cash in on this trend. “Industry 4.0 is not really a revolution. It’s more of an evolution.” – Christian Kubis In this article, we'll look at the advantages that many smart factory pioneers are getting from their smart factories. In addition, we will look at the top smart factory examples and understand how they applied the Industry 4.0 idea and excelled in their smart manufacturing adoption. Industry 4.0 Technology Benefits Manufacturing Industry 4.0 has several benefits that can alter the operations of manufacturers. Beyond optimization and automation, smart manufacturing Industry 4.0 aims to uncover new business prospects and models by increasing the efficiency, speed, and customer focus of manufacturing and associated industries. Key benefits of Manufacturing Industry 4.0 in production include: Improved productivity and efficiency Increased collaboration and knowledge sharing Better agility and adaptability Facilitates compliance Improved customer experience Reduced costs and increased profitability Creates opportunities for innovation Increased revenues World Smart Factory Case Studies and Lessons to Be Learned Schneider Electric, France SAS Schneider Electric's le Vaudreuil plant is a prime example of a smart factory Industry 4.0, having been regarded as one of the most modern manufacturing facilities in the world, utilizing Fourth Industrial Revolution technologies on a large scale. The factory has included cutting-edge digital technology, such as the EcoStruxureTM Augmented Operator Advisor, which enables operators to use augmented reality to accelerate operation and maintenance, resulting in a 2–7% increase in productivity. EcoStruxureTM Resource Advisor's initial deployment saves up to 30% on energy and contributes to long-term improvement. Johnson & Johnson DePuy Synthes, Ireland DePuy Synthes' medical device manufacturing plant, which started in 1997, just underwent a multimillion-dollar makeover to better integrate digitalization and Industry 4.0 smart manufacturing. Johnson & Johnson made a big investment in the Internet of Things. By linking equipment, the factory used IoT technology to create digital representations of physical assets (referred to as “digital twins”). These digital twins resulted in sophisticated machine insights. As a result of these insights, the company was able to reduce operating expenditures while simultaneously reducing machine downtime. Bosch, China Bosch's Wuxi factory's digital transformation uses IIoT and big data. The company integrates its systems to keep track of the whole production process at its facilities. Embedding sensors in production machinery collects data on machine status and cycle time. When data is collected, complicated data analytics tools analyze it in real-time and alert workers to production bottlenecks. This strategy helps forecast equipment failures and allows the organization to arrange maintenance ahead of time. As a consequence, the manufacturer's equipment may run for longer. The Tesla Gigafactory, Germany According to Tesla, the Berlin Gigafactory is the world's most advanced high-volume electric vehicle production plant. On a 300-hectare facility in Grünheide, it produces batteries, powertrains, and cars, starting with the Model Y and Model 3. For Tesla, the goal is not merely to make a smart car, but also to construct a smart factory. The plant's photographs reveal an Industry 4.0 smart factory with solar panels on the roof, resulting in a more sustainable production method. On its official website, Tesla claimed to use cutting-edge casting methods and a highly efficient body shop to improve car safety. Tesla's relentless pursuit of manufacturing efficiency has allowed them to revolutionize the car industry. Haier, China The SmartFactoryKL was established to pave the way for the future's "intelligent factory." It is the world's first manufacturer-independent Industry 4.0 production facility, demonstrating the value of high-quality, flexible manufacturing and the effectiveness with which it can be deployed. The last four years, SmartFactoryKL has been guided by particular strategic objectives that drive innovation; the aim is to see artificial intelligence integrated into production. Two instances of AI-driven transformations include an "order-to-make' mass customization platform and a remote AI-enabled, intelligent service cloud platform that anticipates maintenance needs before they occur. Final Words Enabling smart manufacturing means using the latest technology to improve processes and products. The aforementioned smart factory examples are industry leaders and are thriving by implementing Industry 4.0 technology. Small and medium-sized enterprises (SMEs) may use these smart factory examples to learn about the adoption process, challenges, and solutions. Industry 4.0 is aimed at improving enterprises and minimizing human effort in general. So adopt the smart factory concept and be productive. FAQ What is the difference between a smart factory and a digital factory? The digital factory enables the planning of factories using virtual reality and models, whereas the smart factory enables the operation and optimization of factories in real time. Where does Industry 4.0 come from? The term "Industry 4.0" was coined in Germany to represent data-driven, AI-powered, networked "smart factories" as the fourth industrial revolution's forerunner.

Read More

Reshoring and Technology Platforms Transforming Hiring Practices in the Manufacturing Sector

Article | March 31, 2021

Everyday the supply chain is jeopardized. A freighter stuck in the Suez Canal has severe ripple effects in raw material goods making their way around the world. Trade tariffs and unpredictable consequences from COVID have encouraged many US manufacturers to reshore bringing jobs stateside. This strategy will shift the supply chain challenge to a staffing challenge. As the manufacturing industry is poised for rapid growth over the next 24 months, hiring the best workers once again becomes the top challenge. As the workforce is vaccinated and reshoring the supply chain becomes a clarion call for industry, finding the right people with the right skills forces plant managers, operations managers, and HR managers to find new and innovative recruiting strategies. FactoryFix is an online platform that matches vetted manufacturing workers with companies seeking specific skill sets. This platform sets a new standard in how small to mid-sized manufacturers hire talent across the U.S.

Read More

Building a Smart Factory is Possible Using Machine Learning

Article | December 7, 2021

Machine learning in manufacturing is becoming more widespread, with businesses like GE, Siemens, Intel, Bosch, NVIDIA, and Microsoft all investing heavily in machine learning-based ways to enhance manufacturing. Machine learning is predicted to expand from $1 billion in 2016 to USD 9 billion by 2022at a compound annual growth rate (CAGR) of 44% throughout the forecast period, according to Markets & Markets. The technology is being utilized to cut labor costs, achieve better transition times, and increase manufacturing speed. “I advocate business leaders get to know more about what AI can do and then leverage AI in proofs of concept.” – Michael Walton, Director and Industry Executive, Microsoft speaking with Media 7 Machine learning can help enhance manufacturing processes at the industrial level. This can be achieved by assessing current manufacturing models and identifying flaws and pain factors. Businesses can rapidly address any difficulties to keep the manufacturing pipeline running smoothly. Let us explore how machine learning is transforming manufacturing operations. How Machine Learning Is Transforming Manufacturing Operations “The greatest benefit of machine learning may ultimately be not what the machines learn but what we learn by teaching them.” - Pedro Domingos Machine learning in manufacturing is revolutionizing manufacturing operations and making them more advanced and result-oriented, so let's have a look at how this is unfolding. Allows for Predictive Maintenance Machine learning provides predictive maintenance by forecasting equipment breakdowns and eliminating wasteful downtime. Manufacturers spend far too much time correcting problems instead of planning upkeep. In addition to enhancing asset dependability and product quality, machine learning systems can forecast equipment breakdown with 92% accuracy. Machine learning and predictive analytics increased overall equipment efficiency from 65% to 85%. Increases Product Inspection and Quality Control Machine learning is also utilized for product inspection. Automated inspection and supervision using ML-based computer vision algorithms can discriminate between excellent and bad products. These algorithms simply need excellent samples to train; therefore a fault library is not required. However, an algorithm that compares samples to the most common errors can be built. Machine learning reduces visual quality control costs in manufacturing. Forbe's says AI-powered quality testing can boost detection rates by up to 80%. Logistics-related Tasks Are Automated To run a production line, industrial companies need considerable logistics skills. The use of machine learning-based solutions can improve logistics efficiency and save expenses. Manual, time-consuming operations like logistics and production-related documentation cost the average US business $171,340 annually. It saves thousands of manual working hours every year to automate these everyday procedures. Using Deep Mind AI, Google was able to lower its data center cooling bill by 40%. Creates More Business Opportunities Machine learning is frequently used in the production process. Substantial data analysis is required to create new items or improve existing products. Collection and analysis of huge amounts of product data can help find hidden defects and new business opportunities. This can help improve existing product designs and provide new revenue streams for the company. With machine learning, companies can reduce product development risks by making smarter decisions with better insights. Protects Company’s Digital Assets On-premise and cloud-based machine learning systems require networks, data, and technological platforms to function. Machine learning can help secure these systems and data by restricting access to vital digital platforms and information. Humans’ access sensitive data, choose applications, and connect to it using machine learning. This can help secure digital assets by immediately recognizing irregularities and taking appropriate action. Harley Davidson's Sales Climbed by 40% Using Albert – The ML & AI-Powered Robot Today, traditional marketing is harder to break through. It's easy to see why Albert (an AI-powered robot) would be a good fit for Harley Davidson NYC. Thanks to machine learning and artificial intelligence, robots are producing news stories, working in hotels, controlling traffic, and even running McDonald's. Albert works well with social media and email marketing. It analyzed which customers are more likely to convert and modifies the personal creative copies on its own for the next process. Harley-Davidson is the only company to employ Albert in its business. The company evaluated customer data to find prior consumers who made purchases and spent more time browsing the website than normal. Albert used this data to categorize customers and scale up test campaigns. Using Albert, Harley-Davidson's sales climbed by 40% and leads increased 2,930%, with half coming from high-converting ‘lookalikes' detected by AI and machine learning. Final Words The groundbreaking benefits of machine learning are the pillars of machine learning applications in manufacturing. Machine learning in manufacturing helps enhance productivity without compromising quality. According to Forbes, Amazon has automated warehouse logistics picking and packing using a machine learning system. With Kiva's help, Amazon's typical ‘click to ship' time dropped from 60-75 minutes to 15 minutes. So, industry leaders are seeing fantastic outcomes, and machine learning in manufacturing is the future. FAQ How is machine learning used in manufacturing? Machine learning is used in manufacturing to improve product quality and uncover new efficiencies. It unquestionably aids in the identification and removal of bottlenecks in the manufacturing process. Which two forms of machine learning are there? Machine learning is divided into two forms: supervised and unsupervised. In supervised machine learning, a machine learning algorithm is trained using data that has been labeled. Unsupervised ML has the advantage of working with unlabeled data. What is a machine learning model? A machine learning model is a file that can recognize patterns. In order to learn from a set of data, you must first train a model using an algorithm. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "How is machine learning used in manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Machine learning is used in manufacturing to improve product quality and uncover new efficiencies. It unquestionably aids in the identification and removal of bottlenecks in the manufacturing process." } },{ "@type": "Question", "name": "Which two forms of machine learning are there?", "acceptedAnswer": { "@type": "Answer", "text": "Machine learning is divided into two forms: supervised and unsupervised. In supervised machine learning, a machine learning algorithm is trained using data that has been labeled. Unsupervised ML has the advantage of working with unlabeled data." } },{ "@type": "Question", "name": "What is a machine learning model?", "acceptedAnswer": { "@type": "Answer", "text": "A machine learning model is a file that can recognize patterns. In order to learn from a set of data, you must first train a model using an algorithm." } }] }

Read More

How to Improve Production Scheduling: The 5 Crucial Elements

Article | December 8, 2021

The manufacturing production schedule is a critical aspect that enables the manufacturing business to complete each production activity precisely and on time. Allocating different raw materials, resources, or processes to distinct project phases is called a production schedule. Its goal is to make your manufacturing process as efficient and cost-effective as possible in terms of resources and labor — all while delivering products on schedule. As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity." – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca So, how is the overall production schedule managed? According to businesswire, the global APS (Advanced Production Planning and Scheduling) software market was valued at $1,491.22 million in 2020 and is anticipated to raise $2,941.27 million by 2028 expanding at an 8.86 percent CAGR from 2020 to 2028. Some software and tools are available to assist manufacturing organizations in properly scheduling production planning, including MaxScheduler, TACTIC, MRPeasy, and Gantt charts. Though there are numerous software programs available on the market for production scheduling, the most crucial aspect is determining which elements to consider when planning production. This blog will look at the five most important factors to consider while planning the production schedule. Five Elements to Consider When Scheduling Production As we saw in the introduction, production scheduling is used in the manufacturing process to assign plant and machinery resources, schedule human resources, plan production processes, and purchase materials. So, what are the primary components or stages of this production scheduling process? Let's take a quick look at each of them. Planning to Make the Best Use of the Company's Resources The role of planning in production scheduling is to use the company's resources to maintain a regular production flow. As a result, downtime is decreased, and bottlenecks are minimized, allowing production to be optimized. For production scheduling, two forms of planning can be used: Dynamic Planning: Dynamic planning is carried out under the idea that process stages will alter. So, materials must be ready, but production cannot begin until demand is decided. Static Planning: Static planning is done keeping in mind that all process steps will be completed on schedule and without adjustments. Routing to Determine the Order of Actions A “bill of materials” is used in discrete manufacturing to specify what things are needed and in what quantities. Routing determines the path and sequence of required phases of the process. It may involve in-house operations, but it may also comprise sub-contracted components that must be returned to the production flow for final assembly. Scheduling to Make Use of Predetermined Planning Levels To manufacture products from components or raw materials, scheduling makes use of the previously set planning level. As a result, it is time-dependent and must meet the demand outlined at the planning level. Each department, product, and procedure can have their own unique set of timetables. Sub-schedules for sub-assemblies or mixes and blends may be defined by department-specific master production schedules, utilized at the highest level to define product timeframes. Dispatching to Decide on Immediate Actions Dispatching assigns the following jobs to be done from a subset of the production queue. Dispatching is utilized to make quick decisions. This is in contrast to planning, which involves the planning of future actions. Dispatching is utilized in both pull and push production systems. Execution to Ensure that all Processes are Carried out Correctly Production scheduling must rely on proper execution to ensure that all processes are completed appropriately and in the sequence planned. It requires everyone to know what they are expected to do and when they are expected to do it. Execution requires knowledgeable management decisions, well-trained employees, correct data in the manufacturing plan and schedule, and consistent sales statistics and forecast numbers. All must be present for the organization to carry out its production plan and fulfill orders. How MRPeasy – A Production Scheduling Software Assist Manufacturing Companies in Scheduling Their Production? MRPeasy is a cloud-based material requirements planning (MRP) application explicitly designed for small manufacturing units. Its primary functions are purchase order management, forecasting, and inventory management. This software simplifies the process of scheduling production. It enables you to evaluate all of your anticipated manufacturing orders (MO). The bill of materials (BOM), purchasing, and stocking are all maintained in one location, allowing you to quickly book inventory and increase purchase orders (PO) for acquired parts. MRPeasy enables you to: Obtain all of the detailed information on all of your MOs Consider MOs as a single block or as distinct operations. Drag-and-drop operations and operations to reschedule Calendar or Gantt chart views are available for monitoring scheduled orders. Additionally, you can manage MOs smoothly. With the production planning component, you may create, amend, and update MOs. This app compiles an exhaustive list of all your MOs. You can track their progress based on the status of an order or a part's availability. Additionally, you can search for, filter, and export your MOs. Final Words How to schedule production for your organization requires extensive research, planning, and analysis of overall product demand as well as a grasp of the time required to meet the demand. Production scheduling techniques such as job-based planning, batch method, flow method, and others help develop a productive manufacturing production schedule. Include the elements mentioned above in your manufacturing scheduling to get the best possible benefits, such as better production efficiency, lower production costs, and on-time product delivery for your manufacturing in 2022. FAQ How production planning differ from production scheduler? Production planning and scheduling are often mixed. But there is a difference. Planning decides what and how much work must be done, whereas scheduling specifies who and when the work will be done. What is real-time manufacturing scheduling? Real-Time Scheduling is a production planning, scheduling, and tracking tool that enables manufacturing organizations to improve customer satisfaction and achieve optimal operational performance cost-effectively. How can scheduling be improved? Communication with staff is a great way to improve scheduling. This is true for all businesses, software or otherwise. However, management should not burden employees with ambiguous or unclear communication, and vice versa. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "How production planning differ from production scheduler?", "acceptedAnswer": { "@type": "Answer", "text": "Production planning and scheduling are often mixed. But there is a difference. Planning decides what and how much work must be done, whereas scheduling specifies who and when the work will be done." } },{ "@type": "Question", "name": "What is real-time manufacturing scheduling?", "acceptedAnswer": { "@type": "Answer", "text": "Real-Time Scheduling is a production planning, scheduling, and tracking tool that enables manufacturing organizations to improve customer satisfaction and achieve optimal operational performance cost-effectively." } },{ "@type": "Question", "name": "How can scheduling be improved?", "acceptedAnswer": { "@type": "Answer", "text": "Communication with staff is a great way to improve scheduling. This is true for all businesses, software or otherwise. However, management should not burden employees with ambiguous or unclear communication, and vice versa." } }] }

Read More

Spotlight

Concept Laser

Concept Laser GmbH was founded in 2000 by Frank Herzog and is one of the world’s leading providers of machine and plant technology for 3D printing of metal parts. In December 2016, Concept Laser joined GE Additive, a division of the world's leading digital industrial enterprise, General Electric (GE). GE Additive was founded in 2016 and acquired a 75% stake in Concept Laser, among others.

Events