Keeping Pace with 3D Printing’s Rapid Innovation - Meet the Next Generation DEMI, Born from Customer Feedback

| June 06, 2018
KEEPING PACE WITH 3D PRINTING’S RAPID INNOVATION - MEET THE NEXT GENERATION DEMI, BORN FROM CUSTOMER FEEDBACK
Every day there’s another article about the latest 3D print material or technology that fills our news feeds and inboxes. As the pioneer of the automated post-print market, we’re focused on transforming the 3D printing post-processing space at a rapid pace as well, eliminating the bottleneck to let loose exponential market growth.

Spotlight

Rice Lake Weighing Systems

Rice Lake Weighing Systems is a family-owned, ISO 9001 certified corporation based in the United States. Its headquarters, metrology laboratory and main manufacturing plant are located in Rice Lake, Wisconsin with support facilities throughout the world including North America, South America, India and the Netherlands.

OTHER ARTICLES

How to Improve Production Scheduling: The 5 Crucial Elements

Article | December 8, 2021

The manufacturing production schedule is a critical aspect that enables the manufacturing business to complete each production activity precisely and on time. Allocating different raw materials, resources, or processes to distinct project phases is called a production schedule. Its goal is to make your manufacturing process as efficient and cost-effective as possible in terms of resources and labor — all while delivering products on schedule. As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity." – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca So, how is the overall production schedule managed? According to businesswire, the global APS (Advanced Production Planning and Scheduling) software market was valued at $1,491.22 million in 2020 and is anticipated to raise $2,941.27 million by 2028 expanding at an 8.86 percent CAGR from 2020 to 2028. Some software and tools are available to assist manufacturing organizations in properly scheduling production planning, including MaxScheduler, TACTIC, MRPeasy, and Gantt charts. Though there are numerous software programs available on the market for production scheduling, the most crucial aspect is determining which elements to consider when planning production. This blog will look at the five most important factors to consider while planning the production schedule. Five Elements to Consider When Scheduling Production As we saw in the introduction, production scheduling is used in the manufacturing process to assign plant and machinery resources, schedule human resources, plan production processes, and purchase materials. So, what are the primary components or stages of this production scheduling process? Let's take a quick look at each of them. Planning to Make the Best Use of the Company's Resources The role of planning in production scheduling is to use the company's resources to maintain a regular production flow. As a result, downtime is decreased, and bottlenecks are minimized, allowing production to be optimized. For production scheduling, two forms of planning can be used: Dynamic Planning: Dynamic planning is carried out under the idea that process stages will alter. So, materials must be ready, but production cannot begin until demand is decided. Static Planning: Static planning is done keeping in mind that all process steps will be completed on schedule and without adjustments. Routing to Determine the Order of Actions A “bill of materials” is used in discrete manufacturing to specify what things are needed and in what quantities. Routing determines the path and sequence of required phases of the process. It may involve in-house operations, but it may also comprise sub-contracted components that must be returned to the production flow for final assembly. Scheduling to Make Use of Predetermined Planning Levels To manufacture products from components or raw materials, scheduling makes use of the previously set planning level. As a result, it is time-dependent and must meet the demand outlined at the planning level. Each department, product, and procedure can have their own unique set of timetables. Sub-schedules for sub-assemblies or mixes and blends may be defined by department-specific master production schedules, utilized at the highest level to define product timeframes. Dispatching to Decide on Immediate Actions Dispatching assigns the following jobs to be done from a subset of the production queue. Dispatching is utilized to make quick decisions. This is in contrast to planning, which involves the planning of future actions. Dispatching is utilized in both pull and push production systems. Execution to Ensure that all Processes are Carried out Correctly Production scheduling must rely on proper execution to ensure that all processes are completed appropriately and in the sequence planned. It requires everyone to know what they are expected to do and when they are expected to do it. Execution requires knowledgeable management decisions, well-trained employees, correct data in the manufacturing plan and schedule, and consistent sales statistics and forecast numbers. All must be present for the organization to carry out its production plan and fulfill orders. How MRPeasy – A Production Scheduling Software Assist Manufacturing Companies in Scheduling Their Production? MRPeasy is a cloud-based material requirements planning (MRP) application explicitly designed for small manufacturing units. Its primary functions are purchase order management, forecasting, and inventory management. This software simplifies the process of scheduling production. It enables you to evaluate all of your anticipated manufacturing orders (MO). The bill of materials (BOM), purchasing, and stocking are all maintained in one location, allowing you to quickly book inventory and increase purchase orders (PO) for acquired parts. MRPeasy enables you to: Obtain all of the detailed information on all of your MOs Consider MOs as a single block or as distinct operations. Drag-and-drop operations and operations to reschedule Calendar or Gantt chart views are available for monitoring scheduled orders. Additionally, you can manage MOs smoothly. With the production planning component, you may create, amend, and update MOs. This app compiles an exhaustive list of all your MOs. You can track their progress based on the status of an order or a part's availability. Additionally, you can search for, filter, and export your MOs. Final Words How to schedule production for your organization requires extensive research, planning, and analysis of overall product demand as well as a grasp of the time required to meet the demand. Production scheduling techniques such as job-based planning, batch method, flow method, and others help develop a productive manufacturing production schedule. Include the elements mentioned above in your manufacturing scheduling to get the best possible benefits, such as better production efficiency, lower production costs, and on-time product delivery for your manufacturing in 2022. FAQ How production planning differ from production scheduler? Production planning and scheduling are often mixed. But there is a difference. Planning decides what and how much work must be done, whereas scheduling specifies who and when the work will be done. What is real-time manufacturing scheduling? Real-Time Scheduling is a production planning, scheduling, and tracking tool that enables manufacturing organizations to improve customer satisfaction and achieve optimal operational performance cost-effectively. How can scheduling be improved? Communication with staff is a great way to improve scheduling. This is true for all businesses, software or otherwise. However, management should not burden employees with ambiguous or unclear communication, and vice versa. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "How production planning differ from production scheduler?", "acceptedAnswer": { "@type": "Answer", "text": "Production planning and scheduling are often mixed. But there is a difference. Planning decides what and how much work must be done, whereas scheduling specifies who and when the work will be done." } },{ "@type": "Question", "name": "What is real-time manufacturing scheduling?", "acceptedAnswer": { "@type": "Answer", "text": "Real-Time Scheduling is a production planning, scheduling, and tracking tool that enables manufacturing organizations to improve customer satisfaction and achieve optimal operational performance cost-effectively." } },{ "@type": "Question", "name": "How can scheduling be improved?", "acceptedAnswer": { "@type": "Answer", "text": "Communication with staff is a great way to improve scheduling. This is true for all businesses, software or otherwise. However, management should not burden employees with ambiguous or unclear communication, and vice versa." } }] }

Read More

Examples of Agile Manufacturing to See Why It Is Very Critical

Article | December 8, 2021

An agile manufacturing strategy is one that places a strong priority on responding quickly to the needs of the customer, resulting in a major competitive advantage. It is a captivating method to build a competitive work system in today's fast-moving marketplace. An agile organization must be able to adapt quickly to take advantage of limited opportunities and rapid shifts as per client demand. Agile manufacturing is gaining favor among manufacturers due to its several benefits, including increased work productivity and good control over the final deliverable. Furthermore, the shorter time to market is expanding the global market for enterprise agile transformation services. According to Market Watch, with a CAGR of 17.9% from 2019 to 2026, the US enterprise agile transformation services market is predicted to reach $18,189.32 million by 2026. So why is agile manufacturing gaining traction? What challenges do manufacturers encounter when implementing agile manufacturing, and how have industry leaders like GE, Adobe, and Accenture effectively implemented agile methodology in their organizations and become the best examples of agile manufacturing? In this article, we'll take a closer look at each point. What Is the Importance of Agile Manufacturing? The term "agile manufacturing" refers to the use of a variety of different technologies and methodologies in the production process. In order to meet market standards and criteria, organizations must be able to adapt quickly and effectively to their customers' needs by bringing agility to manufacturing. To ensure the quality of products and the cost of production are kept to a minimum, agile manufacturing helps firms to regulate their end product. Because it immediately addresses the needs and worries of the clients, it is an effective strategy as well. By using this method, firms may better understand the market and use it to their advantage by creating products that meet the needs of their customers. Challenges While Adopting Agile Methodologies on a Project When we talk about agile challenges when implementing it on any project, some will be routine and some will be unique. So, let's get a quick grasp on the agile challenges. Communication about the project: Clear communication between the development team and the product owner is critical throughout the project development life cycle. Any miscommunication can have an impact on the product's quality and the end result of the entire process. Managing the day-to-day operational challenges: Throughout the project, daily minor or large operations play a significant impact on the overall project output. Any obstacles encountered when working on everyday chores should be resolved immediately to avoid any delays or halts in the process. To make it function, you'll need experience: Any inexperienced product owners, scrum masters, or individuals new to the agile approach may have a negative impact on the project's expected output. Various project contributors' buy-in: Inadequate training, a lack of motivation to show up from project participants, keeping customers in the loop, and a lack of departmental management are some of the problems that may hinder the accurate implementation of the agile methodology. The presence of one or more of these obstacles in any business or project may jeopardize the agile methodology and its total output. Though there are many online training courses and books available on how to integrate agile practices into your project, each organization's scenario is unique, as are the challenges they encounter. As a result, handling the situation with experienced personnel that have a can-do attitude is what is required to make it work. Following that, we'll look at some manufacturing business agile examples and how they've successfully implemented agile methodology in their organizations. Agile Manufacturing Examples We'll look at one of the most well-known industrial examples of agile manufacturing that has successfully implemented the methodology and achieved great outcomes. Take a peek at it. Adobe One of the most popular agile manufacturing examples in performance management revamps is Adobe. When Donna Morris was Senior Vice President of People Resources in 2012, she thought the annual performance evaluation and the stack-ranking process were bureaucratic, paperwork-heavy overly complicated, taking up too many management hours for the company. Aside from this, she discovered that it set barriers to joint efforts, creativity, and development. The Adobe team ditched annual performance reviews and encouraged managers and employees to regularly discuss performance via a system called “Check-in.” Adobe has reduced voluntary turnover by 30% and increased voluntary departures by 50% since making the transition. Moreover, the company saved 80,000 management hours annually. General Electric General Electric famously overhauled its performance management system in 2015, paving the path for other global firms to follow in the electronics industry. Annual performance evaluations and the infamous rank-and-yank performance rating system (ranking employees and regularly eliminating the bottom 10%) had GE decide they needed to update their performance management system. The annual appraisals lasted a decade longer than the ranking system. They are now a more agile organization. Instead of directing employees to attain goals, managers now guide and coach them. GE also decided to deploy an app they designed called PD@GE to facilitate regular employee feedback and productive performance discussions. Using the app, each employee establishes priorities and solicits feedback. They can also give real-time feedback. Employees can request a face-to-face meeting at any time to discuss transparency, honesty, and continuous improvement. These traits will not arise quickly and will require motivation and commitment for self-growth. Accenture According to Accenture's previous system, employees who perform well tend to be the most narcissists and self-promoters. Accenture wanted to revamp their system and reward genuine employees. So they started using on-going performance conversations while focusing on performance development. Because it required employees to compete with coworkers who may have had a different position, Accenture decided that forced ranking was illogical. The new system is more centered on the employee and aims to assist them in becoming the best version of themselves. Final Words Agile manufacturing is a way to get the finest results and exceed client expectations on every project. Businesses are benefiting from agile manufacturing because it improves the end product and helps them better utilize their resources. The necessity of agile manufacturing in business is vital, and organizations must overcome the challenges they encounter while applying the agile approach to any of their projects in order to reap the benefits of agile production. FAQ How does agile manufacturing help businesses? An agile manufacturing process enables organizations to respond to client requests with flexibility when market conditions change, as well as regulate their intended production while preserving product quality and minimizing costs. What is an agile organization? Unified alignment, accountability, specialization, transparency, and cooperation are key elements in an agile organization. To guarantee these teams can work efficiently, the organization must maintain a solid environment. What are the core elements of agility? Individuals and interactions over processes and tools are the four values of the Agile Methodology. A working program is preferable to in-depth documentation. During contract negotiation, the customer's cooperation is valued. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "How does agile manufacturing help businesses?", "acceptedAnswer": { "@type": "Answer", "text": "An agile manufacturing process enables organizations to respond to client requests with flexibility when market conditions change, as well as regulate their intended production while preserving product quality and minimizing costs." } },{ "@type": "Question", "name": "What is an agile organization?", "acceptedAnswer": { "@type": "Answer", "text": "Unified alignment, accountability, specialization, transparency, and cooperation are key elements in an agile organization. To guarantee these teams can work efficiently, the organization must maintain a solid environment." } },{ "@type": "Question", "name": "What are the core elements of agility?", "acceptedAnswer": { "@type": "Answer", "text": "Individuals and interactions over processes and tools are the four values of the Agile Methodology. A working program is preferable to in-depth documentation. During contract negotiation, the customer's cooperation is valued." } }] }

Read More

Top Five Industries That Are Leveraging Additive Manufacturing

Article | October 20, 2021

Additive manufacturing has advanced significantly in recent years and is currently used in nearly every area to improve both products and processes in the manufacturing business. As a result, manufacturers have been more imaginative and innovative in offering relevant products to their target customer group due to this technological advancement. Mr. Matt Mong, a prominent business executive, also mentioned in one of his Media7 interviews, As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity. Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca The use of additive technology provides several advantages, including creating unique shapes and low production costs. In addition, the increasing application of additive manufacturing technologies is accelerating the growth of the additive manufacturing market. According to recent research conducted by Metal AM, the value of additively produced components is expected to increase by 15% annually from $12 billion in 2020 to $51 billion in 2030. Thus, additive marketing is the way forward for all industries. This article will cover the top five industries that utilize additive manufacturing and are advancing their businesses every day by overcoming the prevailing challenges such as production errors, downtime, and skilled labor shortage with the benefits of additive manufacturing. Five Industries Utilizing Additive Manufacturing Though additive manufacturing or 3D printing has penetrated almost all the industries, we have picked up a few of the prevailing industries that have started using additive manufacturing and excelling in it. Additive Manufacturing in Aerospace Aerospace has always been the first sector to adopt new technology. Precision is critical in this sector, as a failure of any component is not an option in aerospace. In aircraft production, dimension, weight, and temperature tolerance are critical, and additive technology provides every solution around this. As a result, additive manufacturing has evolved into a critical technology that adds value throughout the supply chain for prominent aircraft firms like Airbus, GE, Boeing, and TTM. Additive Manufacturing in Healthcare Healthcare or medical is one of the industries that is maximizing the benefits of additive manufacturing. Technology enables the medical sector to be more innovative, accurate, and capable of offering the most excellent medical solutions available today. It enables medical practitioners to rehearse before procedures and medical researchers to study functioning human tissues for basic biological research. In addition, it is utilized to fabricate tissues and organoids, surgical instruments, patient-specific surgical models, and bespoke prostheses. Thus, additive technology has altered the face of medicine, elevating it to a more sophisticated and solution-oriented state. Additive Manufacturing in Architecture As with other industries, additive manufacturing reshapes the architectural and construction sectors by eliminating conventional industrial barriers such as production time and cost, material waste, and design constraints. By utilizing 3D printing, designers can now quickly construct and demonstrate how structural parts will function and appear when combined. It also assists designers in seeing how the plan will seem subsequent execution. Additive Manufacturing in Manufacturing Nowadays, additive manufacturing, or 3D printing, is a significant part of the manufacturing process. For example, rather than fabricating a product from solid blocks, additive manufacturing may build a three-dimensional model utilizing fine powder, various metals, polymers, and composite materials as raw materials for constructing a 3D model with a three-dimensional printer. Additive Manufacturing in Education Additive manufacturing is reshaping the educational industry by introducing a new teaching trend and transforming the classroom experience for students. It is being used in various disciplines, including engineering, architecture, medicine, graphic design, geography, history, and even chemistry. They may produce prototypes, three-dimensional models, and historical objects, among other things. Thus, technology enables learners to get more practical information about their respective courses directly on the floor. How has General Electric (GE) been pioneering the use of Additive Manufacturing for 20 years? GE's primary competency is additive manufacturing (3D printing), and the company has made significant investments in the technology. It utilizes additive technology to manufacture a range of components for aviation and other sectors. This article will look at one of their manufacturing case studies and how additive technology enabled them to get the desired result from the end product. CASE STUDY: OPTISYS Optisys modified a vast, multi-part antenna assembly into a palm-sized, lighter, one-piece additive metal antenna. The antenna's aluminum material was chosen because of its surface conductivity, low weight, corrosion resistance, and stress and vibration resistance. Optisys was able to break even on machine acquisition within one year after acquiring its first Direct Metal Laser Melting (DMLM) equipment by utilizing additive technologies. (Source: General Electric) Benefits and Outcomes Non-recurring expenditures were reduced by 75%. Weight loss of 95% The size was reduced by 80%. Part-to-part reduction of 100-to-1 Cycle duration shortened from 11 to 2 months 5 product lines were created for AM, a new market growth Final Words Additive manufacturing benefits a wide variety of businesses. Industries must recognize the advantages of additive manufacturing and begin using the technology in their manufacturing processes to cut production time and costs while increasing product accuracy. This game-changing expansion of the additive manufacturing market across several industries is upgrading both products and production processes. FAQs How do you define additive manufacturing? Additive manufacturing (AM), more generally referred to as 3D printing, is a ground-breaking manufacturing technique that enables the creation of lighter, more robust components and systems. As the name implies, additive manufacturing is adding material to an item to create it. Is additive manufacturing the same as 3D printing? Both terms are interchangeable. Additive manufacturing and 3D printing manufacture components by connecting or adding material from a CAD file. Which companies specialized in additive manufacturing? American Additive Manufacturing, Forecast 3D, Sciaky, Inc., 3 Axis Development, Inc., Jonco Industries, Inc., Polyhistor International, Inc., and Caelynx, LLC are renowned companies for additive manufacturing in the United States of America. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "How do you define additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Additive manufacturing (AM), more generally referred to as 3D printing, is a ground-breaking manufacturing technique that enables the creation of lighter, more robust components and systems. As the name implies, additive manufacturing is adding material to an item to create it." } },{ "@type": "Question", "name": "Is additive manufacturing the same as 3D printing?", "acceptedAnswer": { "@type": "Answer", "text": "Both terms are interchangeable. Additive manufacturing and 3D printing manufacture components by connecting or adding material from a CAD file." } },{ "@type": "Question", "name": "Which companies specialized in additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "American Additive Manufacturing, Forecast 3D, Sciaky, Inc., 3 Axis Development, Inc., Jonco Industries, Inc., Polyhistor International, Inc., and Caelynx, LLC are renowned companies for additive manufacturing in the United States of America." } }] }

Read More

How to Overcome the Additive Manufacturing Challenges in Aerospace

Article | December 6, 2021

Aerospace manufacturing and design are getting advanced with additive manufacturing. However, the limitations of traditional manufacturing techniques sometimes make it incompetent to produce technologically oriented products. Additive Manufacturing (AM)helps the aircraft system run more efficiently by creating lightweight aircraft parts. This is one of the reasons that additive manufacturing is gaining traction in aerospace and other industries. According to recent analysis and data, the global additive manufacturing market is expected to grow from USD 9.52 billion in 2020 to USD 27.91 billion in 2028. The expanding technologies and materials used in additive manufacturing will indeed stimulate industry growth shortly. It’s important to note that there isn’t one channel that is the silver bullet. Most of the time, a combination of different channels will help drive a more powerful outcome.” – Wendy Lee, Director of Marketing at Blue Prism However, the aerospace industry encounters some challenges with additive manufacturing, which is the focus of this article. Scalability, multi-material capabilities, professional workers, high-cost materials, and quality compliance norms are all constraints that aerospace professionals are dealing with. Here we will discuss the top three challenges of additive manufacturing in aerospace and their solutions. Future of Additive Manufacturing in the Aerospace Industry Even though additive manufacturing has been around for a while, it has only lately become advanced enough to be used in the aerospace sector. In the aerospace business, additive manufacturing has the potential to deliver significant benefits. Cost savings, design freedom, weight reduction, shorter time to market, fewer waste materials, better efficiency, and on-demand production are just some of the benefits. Although additive manufacturing cannot make every part, it provides an exciting opportunity to explore feasible alternatives, either supplementing or replacing traditional manufacturing processes. However, it must be taken into account early in the development phase. Additionally, knowledge must be embedded in aircraft design teams to ensure the successful use of additive manufacturing. However, in recent years, AM has become more prevalent in end-to-end manufacturing. According to Deloitte University Press, the future of AM in aerospace may include: Directly embedding additively produced electronics Wings printing 3D printing engine parts Making battlefield repair components Top 3 Additive Manufacturing Challenges in the Aerospace Industry and Solutions While problems are inherent in any new technology, experts overcome them by identifying solutions. Let's look at the top three challenges that the aerospace industry is currently facing and the solutions to overcome them. Lack of Qualified Experts Using 3D printers in production and automating work processes are skills that are lacking. However, the obstacles are natural, and the skilled manufacturing workforce is aging and reluctant to adapt to new design models. This is creating the skills gaps surrounding manipulating AM technology. How to Overcome Less time spent educating employees is better for business. For example, the US National Additive Manufacturing Institute and the European ADMIRE initiative offer accelerated courses via remote learning websites. Of course, you'll need to provide numerous additive manufacturing opportunities to attract the key technologists, either on-site or off-site. They will oversee new hires' activities and help them translate their knowledge of 3D printing into designs and final items. Over Budget Material The typical cost of AM equipment is $300,000. Industrial consumables cost between $100 and $150 per item (although the final price is formed after choosing the material; plastic, for example, is the most budget-friendly option). How to Overcome To overcome this obstacle, you must plan a long-term implementation strategy based on the manufacturing-as-a-service model. On-demand manufacturing reduces manufacturing costs and speeds up product development. You can also go with cheap 3D printers that use cheap welding wire that hasjust come onto the market. They cost $1,200 and may suit your needs. Fresh Quality Compliance Guidelines As 3D printing and CNC manufacturing technologies constantly evolve, there are no established norms or regulations for 3D printed objects. However, 3D printed solutions do not always match traditional quality, durability, and strength. For example, a 3D-printed mechanical part. Can someone order 500 similar parts a few months later? Consistency standards and product post-processing may have a negative impact in such circumstances. So, in such a case, traditional manufacturing wins over 3D printing. How to Overcome You might endeavor to set quality criteria for your 3D-printed products to ensure they are comparable to traditional ones. You can also apply the ANSI AMSC and America Makes standards, which define quality criteria for 3D printed products. How Boeing Applies Additive Manufacturing Technology? Boeing is focusing its efforts on leveraging and speeding up additive manufacturing to transform its manufacturing system and support its growth. The company operates 20 additive manufacturing facilities worldwide and collaborates with vendors to supply 3D-printed components for its commercial, space, and defense platforms. Boeing is now designing missiles, helicopters, and airplanes using 3D printing technology. A small internal team contributes roughly 1,000 3D-printed components to the company's flight projects. Boeing claims that addressing design as an "integrated mechanical system" considerably improves manufacturability and lowers costs. Final Words Additive manufacturing is altering the way the aerospace industry designs and manufactures aircraft parts. Aerospace advanced manufacturing is making aircraft production easier. We've explored solutions to some of the snags that you may encounter. However, other concerns, such as limited multi-material capabilities and size constraints, require solutions, and industry specialists are working on them. Despite these challenges, additive manufacturing is still booming and rocking in a variety of industries. FAQ Why is additive manufacturing used in Aerospace? It allows the industry to build quality parts quickly and inexpensively. Reduce waste and build parts for aircraft that are difficult to manufacture using existing methods. How does additive manufacturing help in Aerospace applications? Environmental control system (ECS) ducting, custom cosmetic aircraft interior components, rocket engine components, combustor liners, composite tooling, oil and fuel tanks, and UAV components are examples of typical applications. 3D printing helps in producing solid, complicated pieces with ease. Which aerospace firms use additive manufacturing/3D printing? Boeing and Airbus are two of the many aircraft businesses that use additive-created parts in their planes. Boeing incorporates additive manufacturing (AM) components into both commercial and military aircraft. Airbus also employs AM metal braces and bleed pipes on the A320neo and A350 XWB aircraft. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "Why is additive manufacturing used in Aerospace?", "acceptedAnswer": { "@type": "Answer", "text": "It allows the industry to build quality parts quickly and inexpensively. Reduce waste and build parts for aircraft that are difficult to manufacture using existing methods." } },{ "@type": "Question", "name": "How does additive manufacturing help in Aerospace applications?", "acceptedAnswer": { "@type": "Answer", "text": "Environmental control system (ECS) ducting, custom cosmetic aircraft interior components, rocket engine components, combustor liners, composite tooling, oil and fuel tanks, and UAV components are examples of typical applications. 3D printing helps in producing solid, complicated pieces with ease." } },{ "@type": "Question", "name": "Which aerospace firms use additive manufacturing/3D printing?", "acceptedAnswer": { "@type": "Answer", "text": "Boeing and Airbus are two of the many aircraft businesses that use additive-created parts in their planes. Boeing incorporates additive manufacturing (AM) components into both commercial and military aircraft. Airbus also employs AM metal braces and bleed pipes on the A320neo and A350 XWB aircraft." } }] }

Read More

Spotlight

Rice Lake Weighing Systems

Rice Lake Weighing Systems is a family-owned, ISO 9001 certified corporation based in the United States. Its headquarters, metrology laboratory and main manufacturing plant are located in Rice Lake, Wisconsin with support facilities throughout the world including North America, South America, India and the Netherlands.

Events