If a picture is worth a thousand words, what is the value of a 3D printed model?

RYAN KYLE| July 19, 2019
IF A PICTURE IS WORTH A THOUSAND WORDS, WHAT IS THE VALUE OF A 3D PRINTED MODEL?
Its night time. There are many stars in the sky, as far as the eye can see. Below the stars, a layer of clouds over the mountains. And in the distance, the glowing lights of a city. Now, scroll to the bottom of this post and tell me if what you imagined, and what is pictured, is similar?

Spotlight

MITEQ Inc

MITEQ, an acronym for (M)icrowave, (I)nformation, (T)ransmission, (EQ)uipment, designs and manufactures a complete line of high-performance components and subsystems for the microwave electronics community. Located on Long Island, New York for more than fourty two years, it has grown into a company which is dedicated to achieving technical excellence, producing quality products and satisfying our customer’s specific needs.

OTHER ARTICLES

How to Overcome the Additive Manufacturing Challenges in Aerospace

Article | December 6, 2021

Aerospace manufacturing and design are getting advanced with additive manufacturing. However, the limitations of traditional manufacturing techniques sometimes make it incompetent to produce technologically oriented products. Additive Manufacturing (AM)helps the aircraft system run more efficiently by creating lightweight aircraft parts. This is one of the reasons that additive manufacturing is gaining traction in aerospace and other industries. According to recent analysis and data, the global additive manufacturing market is expected to grow from USD 9.52 billion in 2020 to USD 27.91 billion in 2028. The expanding technologies and materials used in additive manufacturing will indeed stimulate industry growth shortly. It’s important to note that there isn’t one channel that is the silver bullet. Most of the time, a combination of different channels will help drive a more powerful outcome.” – Wendy Lee, Director of Marketing at Blue Prism However, the aerospace industry encounters some challenges with additive manufacturing, which is the focus of this article. Scalability, multi-material capabilities, professional workers, high-cost materials, and quality compliance norms are all constraints that aerospace professionals are dealing with. Here we will discuss the top three challenges of additive manufacturing in aerospace and their solutions. Future of Additive Manufacturing in the Aerospace Industry Even though additive manufacturing has been around for a while, it has only lately become advanced enough to be used in the aerospace sector. In the aerospace business, additive manufacturing has the potential to deliver significant benefits. Cost savings, design freedom, weight reduction, shorter time to market, fewer waste materials, better efficiency, and on-demand production are just some of the benefits. Although additive manufacturing cannot make every part, it provides an exciting opportunity to explore feasible alternatives, either supplementing or replacing traditional manufacturing processes. However, it must be taken into account early in the development phase. Additionally, knowledge must be embedded in aircraft design teams to ensure the successful use of additive manufacturing. However, in recent years, AM has become more prevalent in end-to-end manufacturing. According to Deloitte University Press, the future of AM in aerospace may include: Directly embedding additively produced electronics Wings printing 3D printing engine parts Making battlefield repair components Top 3 Additive Manufacturing Challenges in the Aerospace Industry and Solutions While problems are inherent in any new technology, experts overcome them by identifying solutions. Let's look at the top three challenges that the aerospace industry is currently facing and the solutions to overcome them. Lack of Qualified Experts Using 3D printers in production and automating work processes are skills that are lacking. However, the obstacles are natural, and the skilled manufacturing workforce is aging and reluctant to adapt to new design models. This is creating the skills gaps surrounding manipulating AM technology. How to Overcome Less time spent educating employees is better for business. For example, the US National Additive Manufacturing Institute and the European ADMIRE initiative offer accelerated courses via remote learning websites. Of course, you'll need to provide numerous additive manufacturing opportunities to attract the key technologists, either on-site or off-site. They will oversee new hires' activities and help them translate their knowledge of 3D printing into designs and final items. Over Budget Material The typical cost of AM equipment is $300,000. Industrial consumables cost between $100 and $150 per item (although the final price is formed after choosing the material; plastic, for example, is the most budget-friendly option). How to Overcome To overcome this obstacle, you must plan a long-term implementation strategy based on the manufacturing-as-a-service model. On-demand manufacturing reduces manufacturing costs and speeds up product development. You can also go with cheap 3D printers that use cheap welding wire that hasjust come onto the market. They cost $1,200 and may suit your needs. Fresh Quality Compliance Guidelines As 3D printing and CNC manufacturing technologies constantly evolve, there are no established norms or regulations for 3D printed objects. However, 3D printed solutions do not always match traditional quality, durability, and strength. For example, a 3D-printed mechanical part. Can someone order 500 similar parts a few months later? Consistency standards and product post-processing may have a negative impact in such circumstances. So, in such a case, traditional manufacturing wins over 3D printing. How to Overcome You might endeavor to set quality criteria for your 3D-printed products to ensure they are comparable to traditional ones. You can also apply the ANSI AMSC and America Makes standards, which define quality criteria for 3D printed products. How Boeing Applies Additive Manufacturing Technology? Boeing is focusing its efforts on leveraging and speeding up additive manufacturing to transform its manufacturing system and support its growth. The company operates 20 additive manufacturing facilities worldwide and collaborates with vendors to supply 3D-printed components for its commercial, space, and defense platforms. Boeing is now designing missiles, helicopters, and airplanes using 3D printing technology. A small internal team contributes roughly 1,000 3D-printed components to the company's flight projects. Boeing claims that addressing design as an "integrated mechanical system" considerably improves manufacturability and lowers costs. Final Words Additive manufacturing is altering the way the aerospace industry designs and manufactures aircraft parts. Aerospace advanced manufacturing is making aircraft production easier. We've explored solutions to some of the snags that you may encounter. However, other concerns, such as limited multi-material capabilities and size constraints, require solutions, and industry specialists are working on them. Despite these challenges, additive manufacturing is still booming and rocking in a variety of industries. FAQ Why is additive manufacturing used in Aerospace? It allows the industry to build quality parts quickly and inexpensively. Reduce waste and build parts for aircraft that are difficult to manufacture using existing methods. How does additive manufacturing help in Aerospace applications? Environmental control system (ECS) ducting, custom cosmetic aircraft interior components, rocket engine components, combustor liners, composite tooling, oil and fuel tanks, and UAV components are examples of typical applications. 3D printing helps in producing solid, complicated pieces with ease. Which aerospace firms use additive manufacturing/3D printing? Boeing and Airbus are two of the many aircraft businesses that use additive-created parts in their planes. Boeing incorporates additive manufacturing (AM) components into both commercial and military aircraft. Airbus also employs AM metal braces and bleed pipes on the A320neo and A350 XWB aircraft. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "Why is additive manufacturing used in Aerospace?", "acceptedAnswer": { "@type": "Answer", "text": "It allows the industry to build quality parts quickly and inexpensively. Reduce waste and build parts for aircraft that are difficult to manufacture using existing methods." } },{ "@type": "Question", "name": "How does additive manufacturing help in Aerospace applications?", "acceptedAnswer": { "@type": "Answer", "text": "Environmental control system (ECS) ducting, custom cosmetic aircraft interior components, rocket engine components, combustor liners, composite tooling, oil and fuel tanks, and UAV components are examples of typical applications. 3D printing helps in producing solid, complicated pieces with ease." } },{ "@type": "Question", "name": "Which aerospace firms use additive manufacturing/3D printing?", "acceptedAnswer": { "@type": "Answer", "text": "Boeing and Airbus are two of the many aircraft businesses that use additive-created parts in their planes. Boeing incorporates additive manufacturing (AM) components into both commercial and military aircraft. Airbus also employs AM metal braces and bleed pipes on the A320neo and A350 XWB aircraft." } }] }

Read More

Microfinancing in Uganda Works with Lean Manufacturing Precision

Article | November 23, 2021

Having recently returned from Uganda, had the pleasure of being introduced by Bernard Munyanziza of Nziza Hospitality to Gilbert Atuhire. He is the Managing Director at Value Addition Microfinance Ltd. which provides micro loans to producers and manufacturers. Atuhire is an attorney by training, however his ability to articulate the core values of Lean Six Sigma and continuous process improvement were abundantly clear. The Kampala, Uganda offices are located on Parliamentary Avenue and Dewinton Rise. This central location allows direct access to industrial projects.

Read More

3 Sales-Driving Manufacturing Marketing Strategies

Article | December 28, 2021

Successful manufacturing marketing strategies are all you need to grow your business and make it visible in every way to your target customer group. Many manufacturers are now becoming vigilant towards B2B marketing and have started forming an individual marketing budget in their annual budgets. “We should quantify marketing to inform what we do – not to decide what we do.” – Rory Sutherland, Vice-Chairman, Ogily As per Statista, nearly half of B2B organizations said they’re planning to boost their content budget in the next year. As a result, B2B marketing for manufacturers must be redesigned and smartly strategized in order to be more effective and fruitful. This article will focus on the significant challenges manufacturers face in B2B marketing and how manufacturers use the three most sales-driven manufacturing marketing strategies. 4 Biggest Marketing Challenges in B2B & Manufacturing Develop Tailored Experiences You have a few seconds to capture the customer's interest. When done correctly, personalization may help. With persistent multi-channel marketing, you may strengthen your brand in target areas. Additionally, an account-based marketing approach enables you to focus on important clients while generating customized content for them. Integrate agile methods to test novel ideas across your business without demanding extensive approval. Further, crowdsourced content, B2B communities, and advocate marketing should be prioritized. Convert Leads into Sales With the right strategy, you may generate more high-quality leads. Relate marketing expenditures to sales and demonstrate the impact of marketing on the bottom line. Align marketing and sales by focusing on the customer's purchasing journey. Increase the quality of your leads, transparency, and collaboration with your partners. Measure Marketing Performance Marketers will be asked to demonstrate ROI and forecast future actions. Proactively calculate the MROI (Marketing Return on Investment) on marketing and sales investments. Determine how to get the most out of your marketing budget by doing more with less. Focus on making data-driven judgments rather than relying on guesswork. Maximize the Marketing Tech Investment As a manufacturer, you have access to a number of tools and resources. You will need to collaborate with your technical team to integrate it. Collaborate with your IT team to effectively adapt, innovate, and apply technology. By integrating current technologies, you can automate and improve marketing campaigns more efficiently. “Marketing professionals have to act as conveners and connect the dots so that there is alignment between stakeholders like sales and operation teams and executive leadership on what products and services will drive growth in any given quarter." – Maliha Aqeel, Director of Global Communication, Fix Network World in conversation with Media7 3 Best B2B Marketing Strategies for Manufacturers That Drive Sales Consider Purchasing an E-commerce Platform Consumer behavior is driving manufacturing transformation, particularly the shift to digital channels. Manufacturers who still handle consumers solely by phone, fax, or email risk losing their loyalty as their worlds and tastes grow increasingly digital. Manufacturers have clearly acknowledged the digital transition in 2021. This year's Manufacturing & E-Commerce Benchmark Report says 98% of manufacturers have, or plan to have, an e-commerce strategy. Moreover, 42% of manufacturers who engaged in e-commerce and digital said it strengthened client connections. How does e-commerce benefit manufacturers? Distributes a customized catalog to your customers Ascertains those spare components are visible It allows customers to customize items online Sells your whole range online Increases your consumer base Focus on the User Experience and Interface (UX/UI) The term "User Experience" refers to all elements of an end user's engagement with a business, its goods, and services. The purpose of user experience is to establish a connection between company objectives and user demands. An engaging user interface or user experience keeps users engaged and consumers pleased. Additionally, it enhances the rate of return on investment (ROI). That is why it is necessary to maintain great UI/UX quality. How does UX/UI benefit manufacturers? Increases the number of conversions Support is less expensive It helps with SEO Brand loyalty is increased Embrace an Omni-channel Strategy Millennials represent 73% of those making buying decisions for companies. Part of this means offering a seamless, consistent shopping experience across a variety of channels. With the right CRM solution, you'll eliminate a lot of the legwork associated with targeting specific buyers. Manufacturers can leverage omni-channel to increase availability, promote sales and traffic, and connect digital touchpoints. How does Omni-channel benefit manufacturers? Supports marketers in developing trust Enhances the user experience with the brand It clarifies a complex subject Final Words Developing a successful manufacturing marketing plan is all that is required to set your organization apart from the competition. Consider thinking outside of the box and developing innovative manufacturing marketing strategies that will surprise your targeted customers and keep you on their minds at all times. B2B marketing for manufacturers has long been a priority, since manufacturers frequently overlook this aspect of their business when they should. Utilize the above-mentioned sales-driven manufacturing marketing methods to assist your organization in growing and reaching the maximum range of target prospects. FAQ What is the goal of business-to-business marketing? B2B marketing's goal is to familiarize other businesses with your brand name and the value of your product or service in order to convert them into clients. How can manufacturers energize their market presence? Manufacturers may boost their market presence by advertising on various social media platforms, opting for native language ads, and partnering with influencers to promote their products or services.

Read More

Three Business Examples That Effectively Practice Lean Manufacturing

Article | December 13, 2021

Lean manufacturing principles enable manufacturing businesses to achieve spectacular results and overhaul their conventional operations. A wide range of industries have adopted lean manufacturing because of its enormous advantages, and they have seen excellent results as a result. The 2010 Compensation Data Manufacturing survey indicated that 69.7% of manufacturing organizations employ lean manufacturing principles. By consuming this data, we can understand how far organizations have progressed toward incorporating lean principles into their operations. “Many companies are not willing to change or think they are done once they make a change. But the truth is technology, consumer demands; the way we work, human needs, and much more are constantly changing.” –Michael Walton, Director, Manufacturing Industry Executive at Microsoft Let's look at some examples of lean manufacturing from some well-known companies. These leading-edge examples of lean manufacturing will shed light on how lean principles positively affect. Leading Companies Using Lean Manufacturing Effectively Successful manufacturing businesses like Toyota, Nike, and Caterpillar are currently employing lean manufacturing ideas in their production processes. In addition, Intel, Parker Hannifin, and John Deere embrace these techniques. From them, we've described three different organizations in various sectors that are successfully adopting lean manufacturing. JOHN DEERE John Deere has also implemented a lean manufacturing strategy. As a result, many of their quality control procedures are automated, which means that more components can be checked for flaws in less time. This means that more supply can be released each day, and the product can be supplied at a lower price to the consumer. Additionally, these controls monitor the manufacturing process for each component of their products, ensuring that they never manufacture more than is required and waste essential materials in the process. INTEL Intel, known for its computer processors, has used lean manufacturing techniques to provide a higher quality product for an industry that requires zero defects. In the past, it took more than three months to get a microprocessor to the manufacturer, but this principle has helped shorten that time to less than ten days. Intel rapidly learned that creating more but worse quality was not the way to raise revenues and increase consumer satisfaction with its products, which were extremely precise and technical. Instead, both parties gain from quality control and waste reduction initiatives. This is even true in the tech industry, where goods are constantly changed and upgraded. TOYOTA Toyota, the world's largest automaker, was the first to implement lean manufacturing in its manufacturing operations. But, even more importantly, they've learned how to limit products that don't match customer expectations by eliminating waste. To achieve these goals, Toyota employs two essential procedures. The first is a method known as Jidoka, which loosely translates as "automation with the assistance of humans." This implies that, although some of the work is automated, humans always ensure that the result is of the highest quality. When something goes wrong, the machines have built-in programs that allow them to shut themselves down. Known as the Just In Time (JIT) model, this is the second stage. Once the last part of a process has been finished, the next phase can begin. No unnecessary work will be done if there is a problem with the assembly line. This lean manufacturing technique has inspired thousands of other businesses. Final Words Lean manufacturing principles and their execution require discipline and patience to get the results out of them. When we see the successful lean manufacturing examples, it is not a fraction of a second success. They have devoted their time, energy, and efforts to modifying every single operational process in order to become a part of lean manufacturing. Lean manufacturing is not a method; it is a way of life that transforms your business practices and takes your firm to a new level of operations. Gain insights from renowned organizations' lean manufacturing success stories to help you become a part of the lean companies of 2022. FAQ What is the effect of lean manufacturing? Lean is a performance-based, continuous-improvement strategy that removes waste and unnecessary processes from organizational operations. As a result, your company becomes more focused on the results. Is it possible for lean manufacturing to fail? It is conceivable in some circumstances, such as failing to focus on a single system implementation or implementing too many system changes at once and failing to have a sound follow-up system to check that everything is working effectively. Why do certain businesses struggle with lean manufacturing? Most businesses fail to see that lean is a management philosophy, not a set of tools. As a result, most corporate leaders either don't understand or lack the patience and control to implement lean manufacturing. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What is the effect of lean manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Lean is a performance-based, continuous-improvement strategy that removes waste and unnecessary processes from organizational operations. As a result, your company becomes more focused on the results." } },{ "@type": "Question", "name": "Is it possible for lean manufacturing to fail?", "acceptedAnswer": { "@type": "Answer", "text": "It is conceivable in some circumstances, such as failing to focus on a single system implementation or implementing too many system changes at once and failing to have a sound follow-up system to check that everything is working effectively." } },{ "@type": "Question", "name": "Why do certain businesses struggle with lean manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Most businesses fail to see that lean is a management philosophy, not a set of tools. As a result, most corporate leaders either don't understand or lack the patience and control to implement lean manufacturing." } }] }

Read More

Spotlight

MITEQ Inc

MITEQ, an acronym for (M)icrowave, (I)nformation, (T)ransmission, (EQ)uipment, designs and manufactures a complete line of high-performance components and subsystems for the microwave electronics community. Located on Long Island, New York for more than fourty two years, it has grown into a company which is dedicated to achieving technical excellence, producing quality products and satisfying our customer’s specific needs.

Events