HP: Eight Trends In 3D Printing

| February 27, 2020
HP: EIGHT TRENDS IN 3D PRINTING
HP has released its list of predictions for 3D printing and digital manufacturing in 2020. Informed by extensive interviews with a team of experts, this year’s research identifies top trends that will have a major impact on advancing Industry 4.0 such as the need for more sustainable production, how automation will transform the factory floor, and the rise of data and software as the backbone of digital manufacturing.

Spotlight

Beauty Manufacturing Solutions Corp

BMSC is a leading US manufacturer of innovative cosmetic, beauty, and personal care products and a top competitor in the industry. We have set ourselves apart by bringing today's hottest beauty trends to market for our domestic and international customers at competitive prices and providing them with dependable and quality service.

OTHER ARTICLES

How Collaborative Robots Are Revolutionizing the Manufacturing Industry

Article | December 10, 2021

A new form of robot is entering manufacturing plants all around the globe. Instead of being locked away in their own work cell, collaborative robots work side by side with their human counterparts. Together, they form the manufacturing crew of the future. Collaborative robots, or cobots, are more flexible, easy to use, and safer than industrial robots. Instead of ending up abandoned in a corner, they are proving to be serious expansions of production capacity leading to better ways of creating superior quality products. 1.1 A New Breed of Bot Cobots are a new type of automation product with their own ISO standards for safety and usability. For a robot to qualify as a cobot, it has to be used for tasks of a collaborative nature while sharing all or part of its reach space with human operators. So it is not the product alone that classifies it as a cobot. Industrial robots must be expertly programmed for one specific job along the production line. This requires hard line coding and endless tweaking and testing, which together with other factors make for a sizable upfront investment. Not so with collaborative robots. Cobots may look similar to traditional robots in some ways, but they are much easier to install and program. This foregoes the need to cooperate with a robotic integration service. Their lightweight and friendly form factor lets manufacturers conveniently relocate them on the shopfloor from one project to another. This renders the robotics technology perfect for a data-driven, Industry 4.0 work environment. Cobots can side with traditional machinery and additive manufacturing equipment, aided by artificial intelligence and cloud connectivity while embedded in a networked environment rich with smart sensors and mixed reality interfaces. 1.2 A Unique Blend of Benefits Because it is fairly straightforward to reprogram a cobot to various tasks, they are perfect for high-mix, low-volume work to meet the rising demand for ultra-customized products. They can also do multiple tasks in unison, such as alternatingly loading a machine and finishing parts from the previous cycle. Here are some other advantages in addition to flexibility: • Low investment. Cobots typically cost a fraction of the price of an industrial robot, but they offer much lower payload and reach. ROI is typically one to two years. • Safety. With rounded surfaces, force-limited joints, and advanced vision systems, cobots are exceptionally safe. This reduces the risk of injury due to impact, crushing, and pinching. Driverless transport systems are wheeled mobile robots that immediately halt when their lasers detect the presence of a nearby human being. • Accuracy. Cobots score well on accuracy with 0.1mm precision or well below that. While they do typically sacrifice speed, dual-mode cobots can be converted to fully-fledged tools of mass production that run at full speed in their own safeguarded space. • Easy to program. Many brands offer user-friendly programming interfaces from beginner to expert level. This reduces the need for continuous availability of expensive and scarce expertise while giving current employees an incentive to upskill. And because they can be deployed within hours, cobots can be leased for temporary projects. • Research. Small processing plants, agile start-ups, and schools can invest in cobots to experiment with ways to automate processes before committing to full automation. 1.3 Cobot Activity Repertoire Cobots are perfect candidates for taking over strenuous, dirty, difficult, or dull jobs previously handled by human workers. This relieves their human co-workers from risk of repetitive strain injury, muscle fatigue, and back problems. They can also increase job satisfaction and ultimately a better retirement. The cobot’s program of responsibilities includes: • Production tasks such as lathing, wire EDM, and sheet stamping. • Welding, brazing, and soldering. • Precision mounting of components and fasteners, and applying adhesive in various stages of general assembly. • Part post-finishing such as hole drilling, deburring, edge trimming, deflashing, sanding, and polishing. • Loading and unloading traditional equipment such as CNC and injection molding machines, and operating it using a control panel to drastically reduce cycle times. • Post-inspection such as damage detection, electronic circuit board testing, and checking for circularity or planarity tolerances. • Box-packing, wrapping, and palletizing. • Automated guided vehicles (AGVs) and autonomous mobile robots (AMRs) assist with internal transport and inventory management. 1.4 No-Code Programming While an industrial robot requires the attention of a high-paid robotics engineer, anyone with basic programming savviness can install and maintain a collaborative unit. Brands are releasing more and more kits for quick installation and specific use cases. Instead of being all numbers and line-coding, current user interaction is exceptionally people-focused. At the lowest skill level, lead-through programming lets operators physically guide the cobot’s end-of-arm-tool (EOAT) through the desired motion path, after which it will flawlessly replicate the instructed behaviour. It is also possible to enter desired waypoints as coordinates. At the highest level, it is of course still possible to have full scripting control. An intermediate step is visual programming interfaces. These let users create blocks of functionality that they can string together into more advanced action sequences, while entering the appropriate parameters for each function such as gripping strength, screwing tightness, or pressing force. These UIs come in the form of in-browser or mobile apps. Based on a 3D-CAD model of the machine and its industrial environment, a digital twin of the cobot can simulate and optimize its operations, for example to prevent collisions. It also lets operators remotely monitor and adjust the machine while it’s running. All the while, back-end artificial intelligence can do its analyses to find further efficiency improvements. 3D models of the to-be-manufactured product can be imported for edge extraction of complex surfaces. These will then be converted into the cobot’s desired movement trajectories instead of tedious manual programming. This makes them feasible to implement for highly dexterous tasks like welding curved hydroformed metal parts or sanding and polishing the most intricate of 3D printed geometries. Interfacing directly with the robot is becoming increasingly human-centered as well. Future cobots will respond to voice interaction as well as touch input, eradicating the screens-and-buttons paradigm of current devices. Some brands are giving the cobot a face with emotional expressions, hoping to lower the barrier to adoption. The upcoming generation of cobots can even respond to body language, as well as show its intentions by projecting light to where they are about to reach or move next. 1.5 A Human World Ultimately, the objective of any company is to create value for people. It is not an option to completely remove humans from the shop floor in an attempt to stay at the forefront of innovation. Attempting to leap to full automation and the utopian “lights-out factory” does not work anyway, as automotive giants such as Ford, Chrysler, GM, and Tesla can testify. A significant portion of human employees will indeed need to give up their roles. On the other hand, improved productivity levels open up space to retain personnel and uplift them to more creative, managerial, analytical, social, or overall more enjoyable jobs. For certain tasks, humans still need to be kept inside the manufacturing loop. For example: • Complex assembly routines and handling of flexible components. • Large vehicle subassemblies contain many variable components and require more hand-eye coordination than one cobot can handle. Humans are needed to make sure everything lands in the right position while the cobot provides assistive muscle power. • Fashion, footwear, jewellery, art pieces, and other products where creation borders on artistry rather than mechanical assembly require the aesthetic eye of humans. People are also needed to spot aesthetic deficiencies in custom one-offs in order to correspond with customers before finishing the production batch. • While intelligent automation software can spot bottlenecks in efficiency, humans are required for creative problem solving and context-awareness to make decisions. A spirit of flexibility and innovation is just as important as the accuracy of perfect repetitions. 1.6 Mission: Install a Cobot Cobots have numerous advantages over industrial solutions or people-only workspaces. They enable faster, more precise, and more sophisticated operations while reducing downtime and maintaining employee satisfaction. Low-voltage operation and reduced material waste fits with sustainable innovation and corporate social responsibility programs. Many companies are reporting surges in production capacity and staff generally experience the presence of cobots as favorable. For example, industry leviathans like BMW and Mercedes-Benz are reaching the conclusion that in many parts of the production process implementing a cobot has been the right decision. Connecting all parts of the production line with full automation solutions is a pipedream. It works only when all steps are perfectly attuned, and in reality this never happens and one misstep can be catastrophic. Whether to hire a human, a robot, or a co-robot is a complex and ever-more pressing decision. Statistical process control is paramount for large organizations to make unbiased data-driven decisions. Determine the key performance indicators, then find the most critical bottlenecks and major opportunities for leaps in production efficiency, product quality, or staff unburdening. Talk to employees for their insights and probe their level of skill and enthusiasm needed for working with their new artificial assistants. Digital transformation should be an exciting shift in the organization and its people, so apply new technological advancements only where it makes sense. Despite common beliefs about robotization, the cobot is an entirely separate product category that can be a surprisingly plug-and-play solution for simple tasks, with programming apps becoming increasingly intuitive. A cobot’s flexibility makes it perfect to run early experiments to help companies find its best spot on the factory floor. Its unbelievable precision, consistency, and level of control generally can make a strong first impression on customers. Not only can cobots increase production capacity while reducing idle time and cycle time to accelerate manufacturing across many vertical markets, but they also enrich the work environment resulting in happier and more involved employees. For many companies, a cobot can be the next logical step in their digital transformation.

Read More

Did You Read about the Manufacturing Challenges for 2022?

Article | December 8, 2021

The new manufacturing industry outlook for 2022 is what businesses desire. Due to COVID-19, the sector has seen several ups and downs in recent years. But the industry overcame the most difficult situation by adopting innovations as their working hands. But all this upgrading and digitalization in manufacturing isn't for everyone. Some manufacturers may struggle with this change, while others may not. So, taking into account all industry segments, we have compiled a list of potential manufacturing challenges for 2022. “Many companies simply are not willing to change or think they are done once they make a change. But the truth is that technology, consumer demands; the way we work, human needs and much more are constantly changing.” – Michael Walton, Director, Industry Executive (Manufacturing) at Microsoft The summary of manufacturing industry challenges and industry outlook for 2022 are presented in the stats below. According to the National Association of Manufacturers (NAM), four million manufacturing jobs will likely be needed over the next decade, and 2.1 million will likely go unfulfilled unless we motivate more people to pursue modern manufacturing occupations. According to PTC, 70% of companies have or are working on a digital transformation plan. According to Adobe, 60% of marketers feel technology has increased competitiveness. The statistics show that while digitalization facilitates the process, it also poses several challenges that must be addressed in the coming years. Let's explore what obstacles manufacturers may face in 2022. The Manufacturing Industry Challenges in 2022 The manufacturing business has had a difficult few years as a result of the current economic downturn, and 2022 may not be even that smooth. Thought, technology, and current trends make the operations of upscale manufacturers easier, but not everyone is on the same page. Let's look at some of the manufacturing challenges that businesses will face in the next year. Skilled Labor Shortage The manufacturing industry is facing a workforce shortfall as a skilled generation prepares to retire. Industry experts say that by 2025, there will be between 2 and 3.5 million unfilled manufacturing jobs. As a result of the advancement of new technologies, manufacturing organisations are finding themselves with fewer personnel. They do, however, require individuals with a diverse range of abilities, such as mathematicians and analytic thinkers, to accomplish the tasks with precision. Specific manufacturing tasks have been automated to save time and money. Industry has adopted machine sensors to capture large amounts of data. With this kind of innovation, the industry's job structure is changing and the desire to hire an untrained or trainable workforce is slowly fading in the industry. However, using augmented reality and virtual reality, manufacturers can easily train personnel for the job and save money. Lack of Ability to Mine Data Manufacturing is progressively using IoT. The majority of businesses have already installed or are planning to install Internet of Things machines. These smart machines let businesses collect data to improve production and conduct predictive maintenance. But getting data is a simple task. The difficult aspect is analyzing and aggregating data. Despite possessing the machines, most companies lack the systems to analyze and retrieve the data recorded by the systems. In this way, the industries are missing a vital opportunity. The industry must improve data mining capabilities to make better decisions in real-time. Using IoT for analytics and predictive maintenance is critical. Monitoring technologies can help the sector examine data quickly. It can also help predict an asset's maintenance period. As a result, the industry will move from replacement to predict and fix. Self-service Web Portals That Is Extremely Detailed and Precise Manufacturing businesses usually strive for on-time order delivery and optimum revenue. However, consumer self-service, which has been in the industry for a long time, has never proven to be a simple walk for clients. Clients are frequently required to pick up the phone and contact manufacturers in order to track their orders and receive delivery estimates. This is hardly the service one would expect from a manufacturer, even more so in today's digital era. The term customers in manufacturing include partners, end-users, and subcontractors. These three clients have distinct requirements and concerns about collaborating with the manufacturer. Companies can better serve their customers if their partner and end-customer portals are linked to a central hub which we can mention as self-service web portals. All of the information and updates they need about their orders will be available to them through this new system. They can track, accept and amend their tasks. They'll also use the self–service portal to contact the manufacturer. In this way, manufacturers can better serve their customers. A system like this will ensure that all parties have access to timely information in a digital format. Meeting the Deadline for the Project Product launch timelines are extremely demanding, tight, and stringent. Every project in the assembly line is about cost, time, and quality. Ultimately, these projects are rigorous and well-controlled. Manufacturers who fail to meet deadlines risk losing millions in potential revenues and sales. Due to rigidity and stringent control, companies are less able to change project scopes or make adjustments as projects develop. The majority of initiatives begin with a design commitment. As new facts or change criteria emerge, adjustment flexibility decreases. This can be aggravating for a team that expects high-quality results. Deadlines are always a constraint. Effective Business Digital Marketing Strategy An industry's key digital transformation challenges are driving leads, sales, and MRR through digital channels. Many manufacturing organizations struggle to efficiently use marketing channels like paid media, enterprise SEO, local SEO, content strategy, and social media. In our opinion, one of the most significant issues these organizations have is their digital experience, website design, and overall brand presentation. They can't ignore them if they want to keep enjoying the manufacturing revival. Visibility of the Supply Chain Manufacturers must respond to the growing demand from customers for greater transparency. In order to meet customer demand across the customer experience and product lifecycle, they must first understand that precise and real-time visibility throughout the supply chain is essential. All details must be taken into consideration by the manufacturers. They must be aware of any delays in the arrival of products on the market. Keeping abreast of such developments would give them a leg up in terms of adjusting or rectifying the situation. Final Words Manufacturing industry challenges have long been a part of the industry. However, industry leaders and professionals have always confronted and overcome any challenges that have come their way. The year 2022 will also be a year of achievements, setting new records, and growth for the manufacturing industry, since it will be a year in which it will develop solutions to all of the aforementioned challenges. FAQ What is the future of manufacturing? Manufacturers should start using AI, block chains, and robotics today. The combination of these new technologies will reshape manufacturing. A new workforce capable of augmenting these technologies is developing and will become the future of manufacturing. How will automation affect manufacturing in 2022? When applied properly, automation can greatly assist manufacturing. These benefits include shorter production times, faster and more efficient work than human labor, and lower production costs. How is the manufacturing industry’s market likely to upsurge in the future? According to BCC Research, the global manufacturing and process control market is expected to grow at a CAGR of 6.3 percent from $86.7 billion in 2020 to $117.7 billion in 2025. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What is the future of manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Manufacturers should start using AI, block chains, and robotics today. The combination of these new technologies will reshape manufacturing. A new workforce capable of augmenting these technologies is developing and will become the future of manufacturing." } },{ "@type": "Question", "name": "How will automation affect manufacturing in 2022?", "acceptedAnswer": { "@type": "Answer", "text": "When applied properly, automation can greatly assist manufacturing. These benefits include shorter production times, faster and more efficient work than human labor, and lower production costs." } },{ "@type": "Question", "name": "How is the manufacturing industry’s market likely to upsurge in the future?", "acceptedAnswer": { "@type": "Answer", "text": "According to BCC Research, the global manufacturing and process control market is expected to grow at a CAGR of 6.3 percent from $86.7 billion in 2020 to $117.7 billion in 2025." } }] }

Read More

Manufacturing in 2022 - Five Emerging Trends in the Industry

Article | October 8, 2021

The trends in the manufacturing industry for 2022 are expanding and altering the industry's conventional face. The future of manufacturing is going to merge with digitalization and technological applications. As a result, all operation methods, products, and manufacturing outcomes will be modernized with new technology applications. To brighten the future of manufacturing, manufacturing companies must examine new trends in the industry before developing their manufacturing plans for 2022. Technological advancements are the next game-changer in the manufacturing business. Adeaca's Vice President of Market Innovation and Project Business Evangelist had recently quoted in an interview with Media7 as, “As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity.” – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca The new trends in manufacturing are leveling up every part and element of the industry. In this article, we'll look at a new trend for each industry aspect that's assisting manufacturers in speeding up the production process, increasing ROI, and propelling their manufacturing business to new heights. Additionally, it will assist you in addressing current industry challenges such as forecasting product demand, addressing skilled manpower shortages, and increasing manufacturing plant efficiency. Five Manufacturing Industry Trends to Watch in 2022 Emerging trends in manufacturing provide a chance to review your production strategy for products and processes. Check out below the upcoming trends in manufacturing that are getting attention in the industry. Customer Engagement and Purchase Experience Creating an exceptional digital customer experience is a new trend in manufacturing. According to industry experts, mapping the customer journey and their interactions with your products is the first step towards establishing a positive connection with your potential consumers. A few of the most popular strategies to improve the consumer purchasing experience and engagement are as follows: Build a knowledge base for your products on your business website Create a comprehensive FAQs page that addresses all of the buyer's possible queries Create a chatbot to provide immediate help to the buyer with further inquiries Create a brand story and a comprehensive description of your manufacturing business If possible, provide product statistics and success stories, and content about consumer satisfaction with your product Create a product functionality video or explanatory picture material to familiarize the potential customer with your product These are some of the trends that engage your prospective buyers and increase their purchasing experience through a range of product-related information and educate them about you and your products. Smart Technology-enabled Products Smart is the new norm in every industry. The old operations and goods that were once a part of everyone's life have now been replaced by technology. Manufacturing is no exception to this alteration. Due to the increasing demand for smart products among customers, every company is now looking forward to inventing and manufacturing smart products. Explore and understand how you may incorporate cutting-edge technology (Artificial Intelligence, Machine Learning, Edge Computing, and Digital Twins, and more) into your products to help them stay updated with manufacturing trends. Virtual and Augmented Reality in Manufacturing (Industry 4.0) Transforming traditional manufacturing systems and processes into smart, tech-savvy ones is a new trend in manufacturing. The future of manufacturing is expected to witness this digitization in 2022 and beyond. Therefore, you must convert your conventional manufacturing plants into smart ones, i.e., as per the concept of Industry 4.0 – the fourth industrial revolution. Discover how prominent companies are implementing Industry 4.0 The following are some popular transformations that many popular manufacturing factories are adopting to become part of the industry revolution. To achieve a zero-carbon footprint, manufacturers may use analytics systems to determine the amount of trash they create and develop ways to eliminate it. (Implemented by Whirlpool) Utilize an analytics platform to decipher usage data for energy, water, and other utilities. (Implemented by Whirlpool) Utilize technology such as Siemens' Mindsphere, which enables online analysis of several aspects of a production plant and helps manufacturers create digital models using real-time data. (Implemented by Siemens) Utilize a combination of IoT and cloud-based technologies to avoid downtime and gather analytics data. (Implemented by Hirotec – a Japan based manufacturing company) Machine learning technology can be used to foretell and avoid system failures in your manufacturing plant. (Implemented by Hirotec – a Japan based manufacturing company) Utilize robotics and to accelerate manufacturing across many verticals. (Implemented by Ford) Utilize 3D printing to improve the precision of product design and to avert product defects during the early production stage. (Implemented by Aerospace: Airbus) These are some examples that other well-known manufacturing companies in the market, such as Hewlett-Packard, Ford, Whirlpool, and Siemens are currently using. So, consult an expert and determine how to leverage emerging technology to turn your production plant into a smart manufacturing unit. Internet of Things (IoT) to Boost Revenue Manufacturing companies have begun to leverage the Internet of Things to establish connectivity between machines and operational procedures throughout manufacturing. This linkage between machine and operation significantly decreases the human supervision required for each step and completely automates them. Manufacturers intend to incorporate these IoT trends in manufacturing into both their products and operational processes. IoT further enables manufacturers to operate and monitor their work remotely. As a result, they can concentrate on developing new strategies and preparing for future ventures. Shifting Focus from B2B to B2C Model Several manufacturers skip intermediaries and connect directly with their consumers to sell efficiently to their target consumer group. This purposeful approach has multiple benefits, which are outlined below. Manufacturers may skip the lengthy retail sales cycle and achieve a shorter time to market The absence of a third party between the manufacturer and the customer reduces the risk of brand misinterpretation or dilution Direct interaction with customers enables manufacturers to obtain more accurate consumer data, product feedback, and requirements for new product development Manufacturers can control the price of their products due to the absence of a third party between them and the target consumer group These benefits of the B2C model attract manufacturers and encourage them to develop added production techniques with these benefits in mind. Final Words Technology, innovation, and digitization are the future of manufacturing. The IoT trends in manufacturing are essential for industrial production and will allow the manufacturing industry to obtain a new competitive edge. Hence, manufacturers must keep in mind this industry revolution (industry 4.0 and 5.0) while developing strategies for their manufacturing operations in 2022. FAQs What are the benefits of adopting the Internet of Things in manufacturing? IoT devices can monitor industrial operations, manufacturing cycles, and other warehouse data management processes automatically. This benefit decreases the amount of time spent monitoring individual operations and increases production speed. What role will smart manufacturing play in the future? According to a grand view research analysis, the smart manufacturing market was worth USD 236.12 billion in 2020 and is expected to extend at a 12.4 percent compound annual growth rate to reach USD 589.98 billion by 2028. What are the critical components of the smart factory of the future? Robotics, the Internet of Things, big data, and cloud-based administration will be critical components of the future smart factory.

Read More

Real-Time Data Collection in Manufacturing: Benefits and Techniques

Article | January 12, 2022

Real-time manufacturing analytics enables the manufacturing base to increase its efficiency and overall productivity in a variety of ways. Production data is an effective means of determining the factory's efficiency and identifying areas where it might be more productive. “Without big data analytics, companies are blind and deaf, wandering out onto the web like deer on a freeway.” – Geoffrey Moore, an American Management Consultant and Author Creating a product-specific data collection may assist you in determining and visualizing what needs to be improved and what is doing well. In this article, we'll look at why manufacturing data collection is vital for your organization and how it may help you improve your operations. Why is Manufacturing Data Collection so Critical? Visibility is the key benefit that every manufacturer gets from manufacturing data collection. By collecting real-time data, or what we refer to as "shop floor data," manufacturers better understand how to assess, comprehend, and improve their plant operations. Manufacturers can make informed decisions based on detailed shop floor data. This is why having precise, real-time production data is critical. “According to Allied Market Research, the worldwide manufacturing analytics market was worth $5,950 million in 2018 and is expected to reach $28,443.7 million by 2026, rising at a 16.5% compound annual growth rate between 2019 and 2026.” For modern manufacturers, the advantages of data collection in manufacturing are numerous. The manufacturing industry benefits from production data and data-driven strategy in the following ways. Substantial reduction in downtime by identifying and addressing the root causes of downtime. It increases manufacturing efficiency and productivity by minimizing production bottlenecks. A more robust maintenance routine that is based on real-time alerts and machine circumstances. Improvements in demand forecasting, supplier scoring, waste reduction, and warehouse optimization reduce supply chain costs. Higher-quality goods that are more in line with customers' wishes and demands depending on how they are utilized in the current world. So, after looking at some of the significant benefits of real-time manufacturing analytics, let’s see what type of data is collected from production data tracking. What Sorts of Data May Be Collected for Production Tracking? Downtime: Operators can record or track downtime for jams, cleaning, minor slowdowns, and stoppages, among other causes, with production tracking software. In the latter scenario, downtime accuracy is optimized by removing rounding, human error, and forgotten downtime occurrences. The software also lets you categorize different types of stops. Changeovers: Changeovers can also be manually recorded. However, changeovers tracked by monitoring software provide valuable data points for analysis, considerably reducing the time required for new configurations. Maintenance Failures: Similar to downtime classification, the program assists in tracking the types of maintenance breakdowns and service orders and their possible causes. This may result in cost savings and enable businesses to implement predictive or prescriptive maintenance strategies based on reliable real-time data. Items of Good Quality: This is a fundamental component of production management. Companies can't fulfill requests for delivery on schedule unless they know what's created first quality. Real-time data collection guarantees that these numbers are accurate and orders are filled efficiently. Scrap: For manufacturers, waste is a significant challenge. However, conventional techniques are prone to overlooking scrap parts or documenting them wrong. The production tracking system can record the number and type of errors, allowing for analysis and improvement. Additionally, it can capture rework, rework time, and associated activities. WIP Inventory: Accurate inventory management is critical in production, yet a significant quantity of material may become "invisible" once it is distributed to the floor. Collecting data on the movement and state of work in progress is critical for determining overall efficiency. Production Schedule: Accurate data collection is essential to managing manufacturing orders and assessing operational progress. Customers' requests may not be fulfilled within the specified lead time if out of stock. Shop floor data gathering provides accurate production histories and helps managers fulfill delivery deadlines. Which Real-time Data Collection Techniques Do Manufacturers Employ? Manufacturers frequently employ a wide range of data collection techniques due to the abundance of data sources. Manual data collection and automated data collection are two of the most common data collection methods. Here are a few examples from both methods: IoT: To provide the appropriate information to the right people at the right time with the correct shop floor insight, IoT (Internet of Things) sensor integration is employed. PLC: The integration of PLC (Programmable Logic Controller) is used to measure and regulate manufacturing operations. HMI: It can provide human context to data by integrating line HMI (Human Machine Interface) systems (such as individual shop terminals like touch screens located on factory floor equipment). SCADA: Overarching management of activities with SCADA (Supervisory Control and Data Acquisition) systems. CNC and Other Machines: Integrating CNC and other machines (both new and older types) to keep tabs on production efficiency and machine well-being is a must these days. Final Words One of the most challenging aspects of shop floor management is determining what to measure and what to overlook. The National Institute of Standards and Technology recently conducted a study on assisting manufacturing operations in determining which data to collect from the shop floor.Additionally, you may utilize the manufacturing data set described above to obtain information from your manufacturing facility and use it strategically to improve operations, productivity, efficiency, and total business revenue in the long term. FAQ What is manufacturing analytics? Manufacturing analytics uses operations and event data and technology in the manufacturing business to assure quality, improve performance and yield, lower costs, and optimize supply chains. How is data collected in manufacturing? Data collection from a manufacturing process can be done through manual methods, paperwork, or a production/process management software system.

Read More

Spotlight

Beauty Manufacturing Solutions Corp

BMSC is a leading US manufacturer of innovative cosmetic, beauty, and personal care products and a top competitor in the industry. We have set ourselves apart by bringing today's hottest beauty trends to market for our domestic and international customers at competitive prices and providing them with dependable and quality service.

Events