How Manufacturing Industry Uses Cloud Technology: Three Case Studies

HOW MANUFACTURING INDUSTRY USES CLOUD
The integration of cutting-edge technologies into the manufacturing industry has transformed the whole economy and accelerated the pace of all operations. Cloud computing for manufacturing is a type of technology that enables businesses to gain visibility, scalability, mobility, security, and improved collaboration, among other benefits. Seeing the benefits, many small and large players in the manufacturing business have embraced cloud computing.

“Cloud computing is not only the future of computing, but the present and the entire past of computing.”

– Larry Ellison, co-founder, executive chairman, CTO, and former CEO of Oracle Corporation.

According to IDC research, the manufacturing industry is the biggest player in cloud computing solutions, with an estimated spending of $19 billion. Additionally, Market Research Future projects that the cloud manufacturing market will reach a value of USD 121.72 billion by 2026. As a result, we may predict that manufacturing cloud computing has a long way to go in the industry. 

In this article, we will look at some of the key cloud manufacturing applications and case studies of three US-based manufacturing businesses that used manufacturing cloud software ERP.

Applications for Manufacturing Cloud Computing


Effective Marketing

Cloud technology's comprehensive nature makes it an ideal solution for the challenges of marketing campaigns. Manufacturers leverage cloud-based applications to help them plan, execute, and manage marketing initiatives. Manufacturers can also look at production and sales data to see how well their campaign is working.

Product Planning and Development

Product planning and development are closely linked in manufacturing. Manufacturers can get their businesses ready for full production by integrating product planning and development information with supply chain data and communications. Comprehensive integration enables products to move a lot faster from notion to engineering, from prototype to small-scale production, and eventually to full-scale production and shipping.

Production and Stock Tracking

Once production begins, cloud technology may assist in the manufacturing and stock management of products. Businesses can use enterprise resource planning (ERP) software to match production levels to available inventory and sales. Pricing quotations, order intake, and client requests can all be managed using the ERP software. Using a standard product to keep an eye on these things reduces the time it takes to get an order.

Productivity Management

Manufacturers rarely maintain the same level of production throughout the year for all products. They can use cloud-based tools to keep track of when to modify production to meet changing market demands. These software solutions ensure that manufacturers have the necessary raw materials on hand by making communication easier across the supply chain. This helps them easily adjust their orders to accommodate future productivity levels.

Three Case Studies of Cloud Computing in Manufacturing


Ralco Industries Leveraged Cloud to Cut Its Inventory by 15%

Ralco Industries is a producer and supplier of automotive components that specializes in precision-welded assembly and prototypes. To overcome the challenges of their business growth, the industrialists moved to manufacturing software cloud ERP and saved some money in the process. There was a lot of inefficiency, quality issues, excessive expediting prices, and wasted time due to inaccurate inventory and many unconnected systems in the past. Moving to a single integrated cloud ERP software system helped Ralco cut inventory on hand by 15%, scrap by more than 60%. It helped Ralco save money on premium freight by more than 20% and save almost $100 on each purchase order that was processed.

Avon Gear Improved Inventory Accuracy and Grew by 20% Yearly

Avon Gear Company, a maker of precision-machined components and subassemblies for heavy industrial equipment, was looking for an ERP system that would integrate data across the organization. The company chose a cloud-based manufacturing ERP to manage and record production activity, inventory status changes, receiving, shipping, and other plant-floor data. Consequently, Avon Gear's inventory accuracy has increased, and the company's growth rate has gone up by an average of 20% each year.

Wolverine Improved First-pass Quality by 15-20% Using Cloud

An automobile brake system technology firm, Wolverine Advanced Materials, found that its manual methods were not sustainable, especially when it came to supporting fast development. To grow and embrace lean manufacturing, the firm chose cloud ERP, which enabled it to properly assess cost and profitability by part. Using manufacturing cloud software, ERP, the company's factory floor workers can see all client orders and conveniently categorize them by material so that they can better manage their schedules. This has resulted in increased production and cost savings for Wolverine. Also, overtime was cut by 60%, while first-pass quality increased by 15% to 20%.


Final Word

For manufacturers, cloud computing is a game changer. Manufacturing companies must deal with a lot of different sites and supply chains, which requires the use of large, complex database applications.

The Cloud computing for manufacturing is expediting industrial operations and overall business decisions in the manufacturing industry. Cloud computing enables industrial organizations to improve visibility across large fleets of facilities. It also contributes to standardization by synchronizing and supplying data for new forms of analytics. Supply chain management becomes more effective and product development gets easier with cloud computing. So, instead of debating whether to use cloud computing, take action and use cloud computing in your business.

FAQ


What is cloud computing in manufacturing industry?

Cloud computing refers to the on-demand provision of IT resources over the internet. Instead of buying, running, and maintaining physical data centers and servers, you can use a cloud service. This approach would help you get computing power, storage, and databases when you need them, rather than buying and running your own.

How does cloud computing help the manufacturing industry?

Cloud-based solutions are more rapidly deployed than traditional systems, which enables firms to stay current with new innovations. Also, they are easier to change and grow, and they have the potential to make resellers more likely to use them.

Why cloud computing vital to modern manufacturing?

Cloud computing impacts all aspects of manufacturing. It enables manufacturers to see and control all manufacturing data and take informed production decisions. This is the reason why it is vital to modern manufacturing.

Spotlight

Gebr. Pfeiffer

Gebr. Pfeiffer has a long and successful tradition of providing the highest level of quality and service. In a rapidly changing environment, the company remains focussed on the individual requirements of its international customers. Thanks to its commitment to these standards, Gebr. Pfeiffer and its staff will continue to shape the future of processing technology.

OTHER ARTICLES

HOW KAR GLOBAL DRIVES ENGAGEMENT WITH CONTENT ANYTIME

Article | August 10, 2020

If you build it, they will come. At least, that was KAR Global LMS Administrator Joseph Cunningham’s hope. He wanted to develop a professional learning culture that would inspire and better serve employees. And, he was about to be proven right.In January 2020, Cunningham and his team soft-launched the Cornerstone Content Anytime (CCA) subscription service. Employees at KAR, a Fortune 1000 company that provides technology-driven remarketing solutions to sellers and buyers across the wholesale used vehicle industry, jumped at the fresh learning opportunities. Almost as soon as the first notice went out that the courses were available, voluntary registrations increased by 286% in February and 105% in March.

Read More

Narrow Aisle Autonomous Trucks Drive Throughput

Article | March 8, 2021

Autonomous reach trucks are most valuable in the manufacturing, distribution, and 3PL environment when embedded with infrastructure-free navigation technology. After a decade of research and development, the best-in-class reach trucks use 3D cameras to pick and drop pallets safely. The reach robot drives cost savings and quality improvements. Pick and drop from conveyors, gravity racks, and mobile racks add to numerous application possibilities. Increasingly narrow aisle widths must be navigated allowing facility layout optimization and space savings. The autonomous reach trucks interface with machines, conveyors, WMS, and ERP software for full integration within existing operations.

Read More
IoT

Rise in Adoption of Advanced Connecting Technology Boost the Demand for Smart Locks

Article | March 2, 2022

Rise in security and privacy concerns and the growing trend of IoT and automation drive the growth of smart surveillance and home security systems. The development of smart locks has enhanced locking systems with improved security. With the emergence of new connected technologies in the market, the demand for advancements in smart locks also increases. Due to this, market players are investing in continual R&D for developing top-notch smart locks, thus meeting the consumers' rising demand and securing their footprint in the industry. Demand for the smart lock is high in residential, commercial, and government sectors Smart locks are convenient to use and provide improved security to the user. From the residential to the commercial sector, the acceptance of smart locks is increasing gradually. Increase in standard of living in urban areas and disposable incomes drives the demand for smart locks in emerging nations. In addition, the easy availability of the internet and improved use of smartphones aid the acceptance of smart locks in residential sectors. The integration of smart locks with larger security systems provides improved protection. Due to this, the demand for smart locks is high commercial sector to provide reliable authentication and security procedures. The smart lock technology is widely used in hospitals, office buildings, banks, and other sectors for a variety of purposes such as network access, workstation access, and physical access. Smart locks are ideal for bolstering the physical security of the building and space. Technology plays a vital role in the government sector. Increase in security and safety concerns of personal and information assets has enhanced the adoption and implementation of smart lock technology in the government sector. Smart locks are used by multiple government agencies and forensics departments, specifically at sensitive information stations, for staff authentication and other security purposes. The market has a range of smart locks with hundreds of features. Technology in smart locks has come a long way. Presently, the market has smart locks with various operational modes such as WiFi, bluetooth, fingerprint, voice assistants and commands, and biometrics. However, there is still a long way to go, and market players are working on new technologies in smart locks. The latest and unique technology in smart locks provides lucrative opportunities for market growth. In addition, increased government investments in smart city projects in developing nations assist the market growth. According to Allied Market Research, the global smart lock market is anticipated to grow at a significant CAGR of 16.4% from 2017 to 2023. New launches and the latest technology in smart locks Market players are adopting strategic collaboration to innovate advanced lock systems with emerging technologies and market expansion. Kaadas, a leading provider of digital smart locks joined hands with Lamborghini to develop smart facial-recognition door locks. Kaadas recently introduced its high-tech and exclusive collection of smart facial-recognition door locks, which uses 3D structured light technology. The advanced 3D recognition technology offers infinitesimal accuracy for face recognition for biometric authentication and door unlocking. The novel Kaadas- Lamborghini facial recognition lock provides improved security for home and office buildings. The 3D recognition technology extracts exact facial features and bone structure for developing the 3D model and doesn’t support door unlocking with videos or photographs. Along with a 3D facial recognition system, the smart digital lock also provides advanced features including PIN code, mechanical override key, fingerprint biometrics, and encrypted CPU card for door unlocking. The facial recognition lock also supports automatic locking of the doors once closed. This high-tech lock can be a game-changer in the smart locks market. Smartphones have become an integral part of today’s lifestyle. With the growing technological advancements in IoT and remote control devices, operating smart devices and systems with smartphones has become easy. Market players are developing advanced and efficient smart locks to meet the growing customer demands. Schlage’s latest Encode Plus Smart WiFi Deadbolt is the first smart lock that works with Apple home keys. Encode Plus Smart lock works with Apple wallet and can be accessed with Apple Watch, iPhone, and home kit. It also offers other features to the customers such as remote controlling with applications, emergency alerts, activity details, and other advanced features which a user expects in a smart lock. The smart lock is also well-suited to Google Assistants and Alexa, and it will be available in the market later this spring. Covid-19 Scenario The outbreak of covid-19 impacted the global smart lock market as consumer spending on nonessential products decreased during the pandemic. However, the world is getting back to normalcy. Also, the inclination towards digitalization and automation has increased among people. The market is expected to witness significant growth in the coming years with the latest advancements in smart lock technologies. The market will recoup soon.

Read More
Manufacturing Technology

Cobots: Paving the Way for Advanced Manufacturing

Article | June 8, 2022

The International Federation of Robotics predicts that cobot sales will reach $1.94 billion per year in 2028, which is 15.7% of the total market for robots. Collaborative robots, popularly known as cobots, have been one of the most impressive sectors of the robotics industry in terms of market growth. Cobots are designed to work alongside as well as near humans, unlike other robots operating in 4-D environments that require separation from humans to operate securely. In manufacturing, the use of cobots is on the rise because they make workers and businesses safer and more productive. The Rise to Prominence: When compared to their human coworkers, these computers may be "taught" to execute repeated jobs and are significantly less prone to making mistakes. Cobots are also relatively simple to operate with minimal training and can usually be set up in a short time span. Cobots also appeal to manufacturers because they are smaller and can move around more easily than traditional industrial robots. A wide range of cobot types may be wheeled from one industrial station to another swiftly and easily. They are, in most cases, software-flexible, allowing them to be reprogrammed to perform multiple jobs rather than just one. Cobots are also appealing because their naturally safe design eliminates the need for often costly safety attachments, saving both money and factory floor space. With such benefits, as well as manufacturing's preference for flexibility considering high variability, low volume, and short product life, it's easy to see why cobots are so valuable. Early Adopters of Cobots: The automobile sector was one of the first to use cobots. University research programs and the General Motors (GM) Robotics Center produced the first cobots in the mid-1990s. These robots were later used by BMW and Volkswagen in 2013. BMW's cobot worked with humans during the door construction process. Volkswagen used cobot to install glow plugs into cylinder heads. Both companies wanted to reduce the physical strain of their workers by having robots perform repetitive and unergonomic tasks. The use of cobots is no longer restricted to the automobile industry. It has diversified into various other processes and industries. Good News for Every Industry: Cobots can be utilized to bring industrial automation to a variety of corporate processes. Each machine can be used for a variety of activities, from fine detail work to palletizing, but some versions are better suited to specific tasks. A business that wants to automate non-load-bearing operations may benefit from a tabletop model like the UR3e, but a larger cobot arm will be able to pull its weight with heavier jobs. One of the most valuable qualities of cobots for a small firm is their versatility. They can be reprogrammed in a short time to address gaps that arise in nearly any aspect of the business, from palletizing to the production line. The adaptability of cobots is due to one key component: their end effectors. End effectors, also known as end of arm tooling (EOAT), are an important part of every cobot. They attach to the robotic arm's end and enable it to do specialized activities ranging from tedious tasks like selecting and packing to technical jobs like welding and sanding. Depending on a company's needs, a single cobot could accomplish up to a dozen jobs in a working week. Final Thoughts: Following the industry's initial skepticism of this new technology, cobots acquired remarkable traction in entering production lines. The advancement was spurred in part by the buzz around cobots, but it is obvious that the ease of use and versatility of cobots made robotization accessible to small and medium-sized firms. Because cobot development has made a big step forward, one can surmise that it will be used in almost every part of manufacturing in the future.

Read More

Spotlight

Gebr. Pfeiffer

Gebr. Pfeiffer has a long and successful tradition of providing the highest level of quality and service. In a rapidly changing environment, the company remains focussed on the individual requirements of its international customers. Thanks to its commitment to these standards, Gebr. Pfeiffer and its staff will continue to shape the future of processing technology.

Related News

Manufacturing Technology

MaxLinear Launches Product Design Kit for Active Electrical Cables Using Keystone PAM4 DSP

MaxLinear | February 02, 2024

MaxLinear, Inc. a leading provider of high-speed interconnect ICs enabling data center, metro, and wireless transport networks, announced the availability of a comprehensive product design kit (PDK) to optimize performance and accelerate the time to market for high-speed Active Electrical Cables (AEC) using MaxLinear’s 5nm PAM4 DSP, Keystone. The PDK is a cost-cutting and time-saving tool for cable manufacturers who want to quickly integrate Keystone into their active electrical cables. MaxLinear’s Keystone PAM4 DSP offers a significant power advantage in AEC applications, which is increasingly becoming a critical factor for hyperscale data centers. The use of 5nm CMOS technology enables designers and manufacturers to build high-speed cables that meet the need for low power, highly integrated, high performance interconnect solutions that will drive the next generation of hyperscale cloud networks. Manufacturers taking advantage of MaxLinear’s PDK to optimize cable designs using Keystone PAM4 DSP will gain a distinct advantage over competitor solutions when trying to maximize reach and minimize power consumption. The PDK makes Keystone easy to integrate with strong applications support, multiple tools to optimize and monitor performance, and reference designs (SW and HW) to accelerate integration. Sophisticated software allows for quick design optimization for the lowest possible power consumption and maximizing cable reach. Cable designers can constantly monitor performance, route signals from any port to any port, and take advantage of hitless firmware upgrades. “MaxLinear is focused on providing not only industry-leading interconnect technologies but also a comprehensive suite of tools to support our manufacturing and design partners,” said Drew Guckenberger, Vice President of High Speed Interconnect at MaxLinear. “Our development kit for our Keystone products provides them with a path to take products to market more quickly and more cost-effectively.” Active electrical cables (AECs) are revolutionizing data center connections. Unlike passive cables, they actively boost signals, allowing for longer distances (up to 7 meters for 400G), higher bandwidth, and thinner, lighter cables. This makes them ideal for high-speed applications like top-of-rack connections (connecting switches to servers within the same rack); direct digital control (enabling flexible interconnectivity within racks and across rows); and breakout solutions (splitting high-speed connections into multiple lower-speed channels). The high-speed interconnect market – which includes active optical cables, active electrical cables, direct attach copper cables, and others – is expected to grow to $17.1B by 2028, up from $10.7B in 2021 according to a market forecast report from The Insight Partners. The Keystone Family The Keystone 5nm DSP family caters to 400G and 800G applications, featuring a groundbreaking 106.25Gbps host side electrical I/O, aligning with the line side interface rate. Available variants support single-mode optics (EML and SiPh), multimode optics and Active Electrical Cables (AECs), offering comprehensive solutions with companion TIAs. Host side interfaces cover ethernet rates of 25G, 50G, and 100G per lane over C2M, MR, and LR host channels. The line side interfaces, tailored for 100G/λ DR, FR, and LR applications, also support these rates. These devices boast extensive DSP functionality, encompassing line-side transmitter DPD, TX FIR, receiver FFE, and DFE. With exceptional performance and signal integrity, these DSPs occupy a compact footprint (12mm x 13mm), ideal for next-gen module form-factors like QSFP-DD800 and OSFP800. Additionally, they are available as Known Good Die (KGD) for denser applications, such as OSFP-XD. About MaxLinear, Inc. MaxLinear, Inc. is a leading provider of radio frequency (RF), analog, digital, and mixed-signal integrated circuits for access and connectivity, wired and wireless infrastructure, and industrial and multimarket applications. MaxLinear is headquartered in Carlsbad, California. MaxLinear, the MaxLinear logo, any other MaxLinear trademarks are all property of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved.

Read More

Smart Factory

PsiQuantum, Mitsubishi UFJ Financial Group and Mitsubishi Chemical Announce Partnership to Design Energy-Efficient Materials on PsiQuantum’s

PsiQuantum | January 30, 2024

PsiQuantum and Mitsubishi UFJ Financial Group announced that they are beginning work with Mitsubishi Chemical Group on a joint project to simulate excited states of photochromic molecules which have widespread industrial and residential potential applications such as the development of smart windows, energy-efficient data storage, solar energy storage and solar cells, and other photoswitching use cases. Qlimate, a PsiQuantum-led initiative that includes MUFG as a partner, focuses on using fault-tolerant quantum computing to crack the most challenging computational problems and accelerate the development of scalable breakthroughs across climate technologies, including more energy-efficient materials. Mitsubishi UFJ Financial Group (MUFG) is committed to supporting the world’s transition to a sustainable future, and to encourage industry access to the most promising breakthrough technologies. By pioneering PsiQuantum’s Qlimate solutions with industry leader Mitsubishi Chemical, MUFG is at the forefront of quantum computing for sustainability. This joint project will determine whether high-accuracy estimates of excited state properties are feasible on early-generation fault-tolerant quantum computers, specifically focusing on diarylethenes used for energy-efficient photoswitching applications. The project will allow Mitsubishi Chemical to gain early insights into how and when fault-tolerant quantum computing can be deployed in support of critical, scalable, sustainable materials. Because predicting the optical properties of materials requires complex analysis of excited states, standard algorithmic techniques for simulating these molecules (such as the Density Functional Theory, or DFT) often produce qualitatively incorrect results. The project will bring together Mitsubishi Chemical’s deep experience of computational chemistry and PsiQuantum’s leading expertise in fault-tolerant quantum computing to push the boundaries of approaching the complex physics in these systems and pave the way to developing new, more powerful energy-efficient photonic materials. Philipp Ernst, Head of Solutions at PsiQuantum, said: “PsiQuantum has dedicated teams who identify, describe and solve complex problem sets with best-in-class quantum algorithms. These are designed specifically to run on fault-tolerant quantum computers and will tackle previously-impossible computational challenges. This partnership will leverage our team’s unique know-how and Mitsubishi Chemical’s expertise in photochromic materials. We are grateful for MUFG’s visionary support in our mission to deploy high-impact quantum computing solutions to fight climate change.” Suguru Azegami, Managing Director, Sustainable Business Division, MUFG said: “We are excited to partner with PsiQuantum and Mitsubishi Chemical on our journey to explore possibilities of quantum computing technologies to solve the imminent global challenge. PsiQuantum’s vision to develop the first utility scale quantum computer before the end of the decade has inspired us, which led our initiative to participate in the Qlimate partnership as the first and sole member from Japan. Mitsubishi Chemical is leading efforts to use the cutting-edge technology to develop next generation materials and we are honored to support the company as its long term financial partner.” Qi Gao, Senior Chief Scientist, Mitsubishi Chemical said: “We are pleased to be part of the partnership and are grateful for MUFG’s support. Mitsubishi Chemical’s over 40 years background in computational chemistry and PsiQuantum’s domain specific knowledge for quantum control is a great fit with the collaboration effort of improving calculation accuracy on quantum device. We hope the partnership will accelerate the innovation of revolutionizing computational studies in chemistry and materials science.” About PsiQuantum PsiQuantum is a private company, founded in 2015 and headquartered in Palo Alto, California. The company’s only mission is to build and deploy the world’s first useful, large-scale quantum computer. Many teams around the world today have demonstrated prototype quantum computing systems, but it is widely accepted that much larger systems are necessary in order to unlock transformational applications across drug discovery, climate technologies, finance, transportation, security & defense and beyond. PsiQuantum’s photonic approach enables rapid scaling via direct leverage of high-volume semiconductor manufacturing and cryogenic infrastructure. The company is partnered with the SLAC National Accelerator Laboratory at Stanford University and Sci-Tech Daresbury in the United Kingdom. About Mitsubishi UFJ Financial Group, Inc. (MUFG) Mitsubishi UFJ Financial Group, Inc. (MUFG) is one of the world’s leading financial groups. Headquartered in Tokyo and with over 360 years of history, MUFG has a global network with approximately 2,000 locations in more than 50 countries. The Group has about 160,000 employees and offers services including commercial banking, trust banking, securities, credit cards, consumer finance, asset management, and leasing. The Group aims to “be the world’s most trusted financial group” through close collaboration among our operating companies and flexibly respond to all of the financial needs of our customers, serving society, and fostering shared and sustainable growth for a better world. MUFG’s shares trade on the Tokyo, Nagoya, and New York stock exchanges. About the Mitsubishi Chemical Group Corporation Mitsubishi Chemical Group Corporation (TSE: 4188) is a specialty materials group with an unwavering commitment to lead with innovative solutions to achieve KAITEKI, the well-being of people and the planet. We bring deep expertise and material science leadership in core market segments such as mobility, digital, medical and food. In this way, we enable industry transformation, technology breakthroughs, and longer, more fruitful lives for us all. Together, around 70,000 employees worldwide provide advanced chemistry-based solutions to deliver the core elements of our slogan — “Science. Value. Life.”

Read More

Additive Manufacturing

Teledyne Relays Unveils Innovative Multi-Function Timer Series

Teledyne Relays, Inc. | January 29, 2024

Teledyne Relays, a leading provider of cutting-edge relay solutions, introduces its new Multi-Function Timer product series, showcasing the company's commitment to delivering advanced, reliable, and versatile solutions for the industrial automation sector. Teledyne Relays Multi-Function Timer MFT series is a state-of-the-art solution designed for a wide variety of applications that demand precise timing control. The user-friendly design features three potentiometers for easy selection of timing functions and ranges, while the LEDs provide at-a-glance feedback of timing and relay status. The MFT series also features 7 selectable timing functions for a wide variety of applications Timing ranges from 0.1 seconds up to 100 hours Compact 17.5mm housing preserves valuable panel space Supply Voltages: 24VDC & 24-240VAC OR 12-240VAC/DC 5A SPDT output relay Engineered with the needs of electrical engineers, panel builders, and automation engineers in mind, these timers find application in various industries, including but not limited to Industrial Automation Manufacturing Process Control Systems HVAC and Refrigeration Agriculture and Irrigation Power Distribution “With the new Multi-Function Timer series, Teledyne Relays continues to lead in providing reliable and versatile solutions for industrial automation, ensuring precise timing control,” said Michael Palakian, Vice President of Global Sales and Marketing at Teledyne Relays. The Multi-Function Timer series from Teledyne Relays ensures precise timing control, offering unparalleled reliability across diverse applications and is available for ordering from Teledyne Relays or an authorized distributor. About Teledyne Relays Teledyne Relays is a world leader in high-performance coaxial switches, electromechanical, and solid-state relays, offering a wide range of solutions for various applications in the aerospace and defense, telecommunications, test and measurement, and industrial markets. With over 60 years of experience, Teledyne Relay has established a reputation for quality, reliability, and customer service excellence. About Teledyne Defense Electronics Serving Defense, Space and Commercial sectors worldwide, Teledyne Defense Electronics offers a comprehensive portfolio of highly engineered solutions that meet your most demanding requirements in the harshest environments. Manufacturing both custom and off-the-shelf product offerings, our diverse product lines meet emerging needs for key applications for avionics, energetics, electronic warfare, missiles, radar, satcom, space and test and measurement.

Read More

Manufacturing Technology

MaxLinear Launches Product Design Kit for Active Electrical Cables Using Keystone PAM4 DSP

MaxLinear | February 02, 2024

MaxLinear, Inc. a leading provider of high-speed interconnect ICs enabling data center, metro, and wireless transport networks, announced the availability of a comprehensive product design kit (PDK) to optimize performance and accelerate the time to market for high-speed Active Electrical Cables (AEC) using MaxLinear’s 5nm PAM4 DSP, Keystone. The PDK is a cost-cutting and time-saving tool for cable manufacturers who want to quickly integrate Keystone into their active electrical cables. MaxLinear’s Keystone PAM4 DSP offers a significant power advantage in AEC applications, which is increasingly becoming a critical factor for hyperscale data centers. The use of 5nm CMOS technology enables designers and manufacturers to build high-speed cables that meet the need for low power, highly integrated, high performance interconnect solutions that will drive the next generation of hyperscale cloud networks. Manufacturers taking advantage of MaxLinear’s PDK to optimize cable designs using Keystone PAM4 DSP will gain a distinct advantage over competitor solutions when trying to maximize reach and minimize power consumption. The PDK makes Keystone easy to integrate with strong applications support, multiple tools to optimize and monitor performance, and reference designs (SW and HW) to accelerate integration. Sophisticated software allows for quick design optimization for the lowest possible power consumption and maximizing cable reach. Cable designers can constantly monitor performance, route signals from any port to any port, and take advantage of hitless firmware upgrades. “MaxLinear is focused on providing not only industry-leading interconnect technologies but also a comprehensive suite of tools to support our manufacturing and design partners,” said Drew Guckenberger, Vice President of High Speed Interconnect at MaxLinear. “Our development kit for our Keystone products provides them with a path to take products to market more quickly and more cost-effectively.” Active electrical cables (AECs) are revolutionizing data center connections. Unlike passive cables, they actively boost signals, allowing for longer distances (up to 7 meters for 400G), higher bandwidth, and thinner, lighter cables. This makes them ideal for high-speed applications like top-of-rack connections (connecting switches to servers within the same rack); direct digital control (enabling flexible interconnectivity within racks and across rows); and breakout solutions (splitting high-speed connections into multiple lower-speed channels). The high-speed interconnect market – which includes active optical cables, active electrical cables, direct attach copper cables, and others – is expected to grow to $17.1B by 2028, up from $10.7B in 2021 according to a market forecast report from The Insight Partners. The Keystone Family The Keystone 5nm DSP family caters to 400G and 800G applications, featuring a groundbreaking 106.25Gbps host side electrical I/O, aligning with the line side interface rate. Available variants support single-mode optics (EML and SiPh), multimode optics and Active Electrical Cables (AECs), offering comprehensive solutions with companion TIAs. Host side interfaces cover ethernet rates of 25G, 50G, and 100G per lane over C2M, MR, and LR host channels. The line side interfaces, tailored for 100G/λ DR, FR, and LR applications, also support these rates. These devices boast extensive DSP functionality, encompassing line-side transmitter DPD, TX FIR, receiver FFE, and DFE. With exceptional performance and signal integrity, these DSPs occupy a compact footprint (12mm x 13mm), ideal for next-gen module form-factors like QSFP-DD800 and OSFP800. Additionally, they are available as Known Good Die (KGD) for denser applications, such as OSFP-XD. About MaxLinear, Inc. MaxLinear, Inc. is a leading provider of radio frequency (RF), analog, digital, and mixed-signal integrated circuits for access and connectivity, wired and wireless infrastructure, and industrial and multimarket applications. MaxLinear is headquartered in Carlsbad, California. MaxLinear, the MaxLinear logo, any other MaxLinear trademarks are all property of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved.

Read More

Smart Factory

PsiQuantum, Mitsubishi UFJ Financial Group and Mitsubishi Chemical Announce Partnership to Design Energy-Efficient Materials on PsiQuantum’s

PsiQuantum | January 30, 2024

PsiQuantum and Mitsubishi UFJ Financial Group announced that they are beginning work with Mitsubishi Chemical Group on a joint project to simulate excited states of photochromic molecules which have widespread industrial and residential potential applications such as the development of smart windows, energy-efficient data storage, solar energy storage and solar cells, and other photoswitching use cases. Qlimate, a PsiQuantum-led initiative that includes MUFG as a partner, focuses on using fault-tolerant quantum computing to crack the most challenging computational problems and accelerate the development of scalable breakthroughs across climate technologies, including more energy-efficient materials. Mitsubishi UFJ Financial Group (MUFG) is committed to supporting the world’s transition to a sustainable future, and to encourage industry access to the most promising breakthrough technologies. By pioneering PsiQuantum’s Qlimate solutions with industry leader Mitsubishi Chemical, MUFG is at the forefront of quantum computing for sustainability. This joint project will determine whether high-accuracy estimates of excited state properties are feasible on early-generation fault-tolerant quantum computers, specifically focusing on diarylethenes used for energy-efficient photoswitching applications. The project will allow Mitsubishi Chemical to gain early insights into how and when fault-tolerant quantum computing can be deployed in support of critical, scalable, sustainable materials. Because predicting the optical properties of materials requires complex analysis of excited states, standard algorithmic techniques for simulating these molecules (such as the Density Functional Theory, or DFT) often produce qualitatively incorrect results. The project will bring together Mitsubishi Chemical’s deep experience of computational chemistry and PsiQuantum’s leading expertise in fault-tolerant quantum computing to push the boundaries of approaching the complex physics in these systems and pave the way to developing new, more powerful energy-efficient photonic materials. Philipp Ernst, Head of Solutions at PsiQuantum, said: “PsiQuantum has dedicated teams who identify, describe and solve complex problem sets with best-in-class quantum algorithms. These are designed specifically to run on fault-tolerant quantum computers and will tackle previously-impossible computational challenges. This partnership will leverage our team’s unique know-how and Mitsubishi Chemical’s expertise in photochromic materials. We are grateful for MUFG’s visionary support in our mission to deploy high-impact quantum computing solutions to fight climate change.” Suguru Azegami, Managing Director, Sustainable Business Division, MUFG said: “We are excited to partner with PsiQuantum and Mitsubishi Chemical on our journey to explore possibilities of quantum computing technologies to solve the imminent global challenge. PsiQuantum’s vision to develop the first utility scale quantum computer before the end of the decade has inspired us, which led our initiative to participate in the Qlimate partnership as the first and sole member from Japan. Mitsubishi Chemical is leading efforts to use the cutting-edge technology to develop next generation materials and we are honored to support the company as its long term financial partner.” Qi Gao, Senior Chief Scientist, Mitsubishi Chemical said: “We are pleased to be part of the partnership and are grateful for MUFG’s support. Mitsubishi Chemical’s over 40 years background in computational chemistry and PsiQuantum’s domain specific knowledge for quantum control is a great fit with the collaboration effort of improving calculation accuracy on quantum device. We hope the partnership will accelerate the innovation of revolutionizing computational studies in chemistry and materials science.” About PsiQuantum PsiQuantum is a private company, founded in 2015 and headquartered in Palo Alto, California. The company’s only mission is to build and deploy the world’s first useful, large-scale quantum computer. Many teams around the world today have demonstrated prototype quantum computing systems, but it is widely accepted that much larger systems are necessary in order to unlock transformational applications across drug discovery, climate technologies, finance, transportation, security & defense and beyond. PsiQuantum’s photonic approach enables rapid scaling via direct leverage of high-volume semiconductor manufacturing and cryogenic infrastructure. The company is partnered with the SLAC National Accelerator Laboratory at Stanford University and Sci-Tech Daresbury in the United Kingdom. About Mitsubishi UFJ Financial Group, Inc. (MUFG) Mitsubishi UFJ Financial Group, Inc. (MUFG) is one of the world’s leading financial groups. Headquartered in Tokyo and with over 360 years of history, MUFG has a global network with approximately 2,000 locations in more than 50 countries. The Group has about 160,000 employees and offers services including commercial banking, trust banking, securities, credit cards, consumer finance, asset management, and leasing. The Group aims to “be the world’s most trusted financial group” through close collaboration among our operating companies and flexibly respond to all of the financial needs of our customers, serving society, and fostering shared and sustainable growth for a better world. MUFG’s shares trade on the Tokyo, Nagoya, and New York stock exchanges. About the Mitsubishi Chemical Group Corporation Mitsubishi Chemical Group Corporation (TSE: 4188) is a specialty materials group with an unwavering commitment to lead with innovative solutions to achieve KAITEKI, the well-being of people and the planet. We bring deep expertise and material science leadership in core market segments such as mobility, digital, medical and food. In this way, we enable industry transformation, technology breakthroughs, and longer, more fruitful lives for us all. Together, around 70,000 employees worldwide provide advanced chemistry-based solutions to deliver the core elements of our slogan — “Science. Value. Life.”

Read More

Additive Manufacturing

Teledyne Relays Unveils Innovative Multi-Function Timer Series

Teledyne Relays, Inc. | January 29, 2024

Teledyne Relays, a leading provider of cutting-edge relay solutions, introduces its new Multi-Function Timer product series, showcasing the company's commitment to delivering advanced, reliable, and versatile solutions for the industrial automation sector. Teledyne Relays Multi-Function Timer MFT series is a state-of-the-art solution designed for a wide variety of applications that demand precise timing control. The user-friendly design features three potentiometers for easy selection of timing functions and ranges, while the LEDs provide at-a-glance feedback of timing and relay status. The MFT series also features 7 selectable timing functions for a wide variety of applications Timing ranges from 0.1 seconds up to 100 hours Compact 17.5mm housing preserves valuable panel space Supply Voltages: 24VDC & 24-240VAC OR 12-240VAC/DC 5A SPDT output relay Engineered with the needs of electrical engineers, panel builders, and automation engineers in mind, these timers find application in various industries, including but not limited to Industrial Automation Manufacturing Process Control Systems HVAC and Refrigeration Agriculture and Irrigation Power Distribution “With the new Multi-Function Timer series, Teledyne Relays continues to lead in providing reliable and versatile solutions for industrial automation, ensuring precise timing control,” said Michael Palakian, Vice President of Global Sales and Marketing at Teledyne Relays. The Multi-Function Timer series from Teledyne Relays ensures precise timing control, offering unparalleled reliability across diverse applications and is available for ordering from Teledyne Relays or an authorized distributor. About Teledyne Relays Teledyne Relays is a world leader in high-performance coaxial switches, electromechanical, and solid-state relays, offering a wide range of solutions for various applications in the aerospace and defense, telecommunications, test and measurement, and industrial markets. With over 60 years of experience, Teledyne Relay has established a reputation for quality, reliability, and customer service excellence. About Teledyne Defense Electronics Serving Defense, Space and Commercial sectors worldwide, Teledyne Defense Electronics offers a comprehensive portfolio of highly engineered solutions that meet your most demanding requirements in the harshest environments. Manufacturing both custom and off-the-shelf product offerings, our diverse product lines meet emerging needs for key applications for avionics, energetics, electronic warfare, missiles, radar, satcom, space and test and measurement.

Read More

Events