How Leading Manufacturing Organizations Select ERP to Support Their Growth Strategies

| August 15, 2017
HOW LEADING MANUFACTURING ORGANIZATIONS SELECT ERP TO SUPPORT THEIR GROWTH STRATEGIES
Top performers must select a solution that can combat manufacturing pressures and emulates a modern technology environment. This means selecting functional, collaborative solutions that support real-time decisionmaking, agility, and collaboration through capabilities such as mobility and analytics. Indeed, top-performing manufacturers select user-friendly, but powerful, solutions that enable users to easily access the information they need, and convert that information to actions and smart decisions that enable growth.

Spotlight

SEACAD Technologies

SEACAD Technologies Pte Ltd is the first, longest standing, and still remains the largest SolidWorks reseller in Singapore. With the most experienced and professional team in the local marketplace, SEACAD is uniquely qualified to provide the best sales support, implementation, training and technical resources to our customers.

OTHER ARTICLES

It's Time to Redesign Your Business with Manufacturing Analytics

Article | December 21, 2021

Consumer demand has shifted dramatically in recent years, and manufacturers are trying to adapt to this shift. To maintain high product quality, minimize costs, and optimize supply chains, manufacturing analyticshas become essential for manufacturers. Manufacturing analyticsis the process of gathering and analyzing data from various systems, equipment, and IoT devices in real-time to get essential insights. As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity. – Matt Mong Manufacturing analyticscan assist in maintaining production quality, boost performance with high-profit returns, decrease costs, and optimize supply networks. This article will outline manufacturing analyticsand present a list of possible application cases. It will also highlight the benefits of manufacturing analyticsfor any shop floor or factory. Manufacturing analytics: An Overview With manufacturing analytics, we can streamline and speed up the entire process. Data interchange and automation helps in speeding up the production process. Manufacturing analyticsuses predictive manufacturing, big data, Industrial IoT, network virtualization, and machine learningto produce better scalable production solutions. Manufacturing analyticscollects and analyses data from many sources via sensors embedded in machinery to identify areas for improvement. Data is collected and presented in an easy-to-understand structure to illustrate where difficulties emerge throughout the process. In short, manufacturing analyticscollects and analyses large volumes of data to reveal insights that might improve performance. Users can also obtain automated business reports to reply in real-time. Why Manufacturing analytics is Vital for Leading Businesses There are numerous benefits of manufacturing analyticsthat drive any company’s production and overall manufacturing business growth. The benefits of manufacturing analyticsfall into three distinct categories as below. It reduces the overall cost: Analytics may save a significant amount of money if used more efficiently. Labor costs are also reduced due to automation and semi-autonomous machinery. Similarly, preventive and prescriptive maintenance programs may save money while enhancing productivity. It boosts profits for businesses: Manufacturers can respond swiftly to changes in demand using real-time insights in production, inventory management, and demand and supply forecasting. For example, assume the data indicates that they are approaching their maximum capacity. In such instances, they can increase over time, increase capacity, modify procedures, or tweak other production areas to adapt and maintain delivery times. Other unforeseen benefits: There are several advantages to the increased capabilities enabled by manufacturing analytics. These benefits include lower energy use, safer environmental practices, fewer compliance failures, and more customer satisfaction. Five Real-world Applications of Manufacturing Analytics Predictive Maintenance A machine's analytics uses aggregate data from real-time detectors to anticipate when it needs to be replaced or functioning irregularly. This process helps predict machine failure or equipment defects. Analytics can assist in determining a plant's capacity and how many products are produced by the unit in every production cycle, which is helpful in capacity planning. In addition, analytics may help determine the ideal number of units to create over time by considering capacity, sales predictions, and parallel schedules. Predictive analytics solutions can automate maintenance requests and readings that shortens the procedure and reduce maintenance expenses. Product Development Product development is an expensive process in manufacturing. As a result, businesses must invest in R&D to develop new product lines, improve existing models, and generate new value-added services. Earlier, this approach was in place by repeated modeling to get the finest outcome. This approach can now be modeled to a large extent, with the help of data science and technologically superior analytics. Real-world circumstances can be replicated electronically using "digital twins" and other modeling approaches to anticipate performance and decrease R&D expenses. Demand Forecasting Many factors that might help in the plan significant capital expenditures or brief breakdowns can be explained using historical data and a few high-impact variable strategies. For example, consider the seasonality of products like ice cream. As a result, historical market data and a few high-impact factors can help explain numerous variables and plan major capital expenditures or short-term shutdowns. In addition to demand forecasting, predictive analytics incorporates advanced statistical techniques. With predictive analytics, a wide range of parameters, including customer buying behavior, raw material availability, and trade war implications, may be taken into consideration. Warranty Analysis Warranty support may be a load for many manufacturers. Warranties are frequently based on a "one-size-fits-all" approach that is broader. This approach introduces uncertainty and unanticipated complications into the equation. Products may be modified or updated to decrease failure and hence expense by using data science and obtaining information from active warranties in the field. It can also lead to better-informed iterations for new product lines to minimize field complaints. Managing Supply Chain Risks Data may be recorded from commodities in transit and sent straight from vendor equipment to the software platform, helping to enable end-to-end visibility in the supply chain. Manufacturing analyticsallows organizations to manage their supply chains like a "control tower," directing resources to speed up or slow down. They may also order backup supplies and activate secondary suppliers when demand changes. Final Words Businesses should adapt to changing times. Using analytics in manufacturinghas altered the business industry and spared it from possible hazards while boosting production lines. Industry 4.0's route has been carved. Manufacturing analyticsis the key to true Industry 4.0, and without it, the data produced by clever IoT devices is meaningless. The future is data-driven, and success will go to those who are ready to adopt it. The faster adoption, the sooner firms go ahead of the competition. FAQ How can data analytics help manufacturers? Data analytics tools can help manufacturers analyze machine conditions and efficiency in real-time. It enables manufacturers to do predictive maintenance, something they were previously unable to accomplish. Why is data so crucial in manufacturing? Data helps enhance manufacturing quality control. Manufacturers can better understand their company's performance and make changes by collecting data. Data-driven manufacturing helps management to track production and labor time, improve maintenance and quality, and reduce business and safety concerns. What is Predictive Manufacturing? Predictive manufacturing uses descriptive analytics and data visualization to offer a real-time perspective of asset health and dependability performance. In addition, it helps factories spot quality issues and takes remedial action quicker by eliminating the waste and the cost associated with it.

Read More

How to Find a Suitable Contract Manufacturing Partner?

Article | December 10, 2021

The benefits of contract manufacturing are triggering manufacturers to utilize it as a strategy to speed up production and increase revenue. According to BCC Research, the worldwide contract manufacturing industry should increase from $2.0 trillion in 2018 to $2.7 trillion in 2023, a 6.7% CAGR. Given the growing demand, contract manufacturing has a long way to go in innovating new solutions for manufacturers. As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity. – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca Let us look at the benefits and concept of contract manufacturing, often known as manufacturing partners in some circles. Contract Manufacturing: Concept and Benefits Concept Contract manufacturing is a business model in which a company agreeswith a contract manufacturer to make components or finished goods based on the hiring company's design. In short, it is a business model in which one company hires another company to manufacture components or goods for them or their products. Benefits The following are some of the primary advantages of contract manufacturing that attract manufacturers to adopt this concept and find a trusted supplier to manufacture any product or part of their product without much difficulty. Cost Efficiency: In contract manufacturing, companies do not have to pay for the facility, equipment, or labor needed. Resource Allocations: The money and resources saved through contract manufacturing can be redirected towards other company operations. Faster Lead Times: Hiring a contract manufacturer reduces manufacturing time. This improves market speed, delivery time, and customer service. Quality Control: Contract manufacturers are likely to have their own quality control processes in place, which allow them to spot counterfeit or damaged products early on. Advanced Skill Sets: Companies can benefit from the skills they may not possess, but the contract manufacturer does. Contract Manufacturing Examples Here are some examples of contract manufacturing companies that offer manufacturing services to other businesses and work on full-service outside manufacturing projects. Example 1: Kimball Electronics Group Kimball Electronics Group provides a comprehensive range of electronics manufacturing services, including engineering, prototyping, testing, electronic data interchange (EDI), new product introduction, and repair depot services. Soldering, assembly, reflow, de-paneling, flux application, inspection, screen printing, testing, and rework are all processes used in their manufacturing. Example 2: Scapa Healthcare Scapa Healthcare, headquartered in Knoxville, Tennessee, provides contract manufacturing services for medical and cosmetic products. Their portfolio of products includes sunscreen, silicone medical adhesives, and innovative materials. Additionally, the organization provides development, packaging, and logistics services. Things to Consider While Selecting a Contract Manufacturing (CM) Partner You need to know how to identify the ideal contract manufacturer for your business to accelerate production and produce high-quality items. Below, we've listed some of the most important things to keep in mind while looking for an outsourced manufacturing partner for your company. Competency Understanding a contract manufacturer's (CM) capabilities in terms of logistics and fulfillment is critical. Is your potential CM able to meet shifting product demands? How to use the CM's services? You may need one or more services from CM for your product, so always examine their capabilities or develop a list of their services and see which ones are valuable for you. Knowledge or Prerequisite A qualified, experienced, subject matter expert CM always correctly understands the requirements and delivers the services as per expectations and within the time frame specified in your production schedule. Always inquire about their qualifications or certificates in the places where your product will be manufactured. Compliance Any contract manufacturing plan must have an agreement or compliance clause. Always inquire about the compliance procedure and thoroughly understand the terms and claws to avoid future issues. Workforces Verify your possible contract manufacturer's personnel count. Is it easy to talk to them? Is labor skilled enough to meet the product's goals? It is critical for large-scale production and production, requiring swift responses. Any work force shortage might cause production delays. Gear & Expertise Check for machines and equipment as well as human labor in your possible CM. Many CM lease equipment to complete a project. So always check how the CM will organize the essential equipment for your project. Expertise in using the equipment is also necessary. Verify which machines were used and whether or not professionals were involved. Whereabouts The CM's location is the main factor to check. Because the CM may have numerous plants, knowing which plant is assigned to your product is essential to knowing every aspect of its production. Also, the assembly location must allow you to visit and inspect the manufacturing between cycles. Business Stability Finding a reliable contract manufacturer with solid financial backing and market roots is essential to avoid market scams. However, you must also analyze and solve risk factors like equipment failure, supplier capacity, and unreasonable expectations. Selection Myths of Contract Manufacturing Partner Once you've produced a list of shortlisted contract manufacturing partners who meet all of the criteria described in the preceding heading, you can proceed by following the steps below to select the best contract manufacturing partner. Look for Who is Willing to Invest in Your Business Incorrect. The objective is to find a vendor prepared to manufacture at a loss. A contract manufacturer's strength is that they can stay competitive and make a profit for both parties. Focus on Tier 1 CM Partners from the Market This one is indeed not acceptable. Tier 1 is a financial phrase used to separate large corporations from smaller ones. You want a contract manufacturer who understands your business and your needs. Don't worry about the manufacturing partner's size. Go Ahead with the One Who Offers the Best Services at the Lowest Price Trying to get the cheapest quote isn't always the best idea. You should get a quote from your contract manufacturing partner, but the quote may not always reveal the complete story. Cost per unit frequently captures approximately 75% of total supply chain cost. Some contract manufacturers charge the OEM the remaining 25%. Consider the complete picture while selecting a CM partner. Final Words Manufacturers use contract manufacturing to meet their commercial goals. Therefore, contract manufacturing is a win-win situation for both industrialists and contract manufacturers. Finding the proper contract manufacturing partner for your company is not straightforward, but our brief guide can help you identify the right manufacturing partner. FAQ What makes a good contract manufacturer? The most significant contract manufacturing firms are more than just supply chain partners. They recognize and treat your items as if they were their own, are meticulous in their operations, and are concerned with quality and capital. What differentiates contract manufacturing from outsourcing? A contract is a legally binding arrangement. It involves two or more parties. For example, outsourcing is outsourcing some tasks to an outside organization under a contract agreed upon by both parties. What's the difference between contract manufacturing and licensing? Contract manufacturing only outsources production phases, while licensing is far more complex. In return for fees, a corporation sells the right to utilize its intellectual property to another company. Licenses are like franchises. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What makes a good contract manufacturer?", "acceptedAnswer": { "@type": "Answer", "text": "The most significant contract manufacturing firms are more than just supply chain partners. They recognize and treat your items as if they were their own, are meticulous in their operations, and are concerned with quality and capital." } },{ "@type": "Question", "name": "What differentiates contract manufacturing from outsourcing?", "acceptedAnswer": { "@type": "Answer", "text": "A contract is a legally binding arrangement. It involves two or more parties. For example, outsourcing is outsourcing some tasks to an outside organization under a contract agreed upon by both parties." } },{ "@type": "Question", "name": "What's the difference between contract manufacturing and licensing?", "acceptedAnswer": { "@type": "Answer", "text": "Contract manufacturing only outsources production phases, while licensing is far more complex. In return for fees, a corporation sells the right to utilize its intellectual property to another company. Licenses are like franchises." } }] }

Read More

How Smart Manufacturing Is Powered by Digital Twin Technology?

Article | December 8, 2021

A digital twin is a virtual model of an object or system that comprises its lifecycle. It is updated with real-time data and aids decision-making through simulation, machine learning, and reasoning for the production system. IoT sensor data from the original object is used to create a digital twin of the system. This cloud-connected data allows engineers to monitor systems and model system dynamics in real-time. Modifications can be tested on the digital twin before making changes to the original system. Considering that digital twins are supposed to replicate a product's complete lifecycle and are used throughout the production process, it's not unexpected that digital twins have become prevalent in all stages of manufacturing. “More than a blueprint or schematic, a digital twin combines a real-time simulation of system dynamics with a set of executive controls,” – Dr. Daniel Araya, consultant and advisor with a special interest in artificial intelligence, technology policy, and governance Companies will increasingly embrace digital twins to boost productivity and decrease expenses. As per recent research by Research and Markets, nearly 36% of executives across industries recognize the benefits of digital twinning, with half planning to implement it by 2028.So how does this digital twin technology benefit modern manufacturing? Let's have a look. How the Digital Twin Drives Smart Manufacturing Digital twins in manufacturing are used to replicate production systems. Manufacturers can develop virtual representations of real-world products, equipment, processes, or systems using data from sensors connected to machines, tools, and other devices. In manufacturing, such simulations assist in monitoring and adapting equipment performance in real-time. With machine learning techniques, digital twins can predict future events and anticipate potential difficulties. For maintenance, digital twins allow for quick detection of any problems. They collect real-time system data, prior failure data, and relevant maintenance data. The technique employs machine learning and artificial intelligence to predict maintenance requirements. Using this data, companies can avoid production downtime. Digital Twin and Artificial Intelligence (AI) in manufacturing Using digital twins and AI in production can enhance uptime by predicting potential failures and keeping equipment working smoothly. In addition, there are significant cost savings in the planning and design process as digital twins and AI can be used to replicate a specific scenario. Maintenance is another area that has seen significant progress with the use of digital twin manufacturing. A Digital Twin powered by AI can predict when a piece of equipment will fail, allowing you to arrange predictive maintenance that is not simply taking information from OEM manuals but can significantly cut maintenance expenses along with reducing downtime. Using the digital twin, it is feasible to train virtual workers in high-risk functions, similar to how pilots are trained using flight simulators. It also frees up highly skilled workers to upgrade the plant and streamline operations. General Electric Created the Most Advanced Digital Twin General Electric Company (GE) is a multinational business based in Boston that was founded in 1892. It has developed the world's most advanced digital twin, which blends analytic models for power plant components that monitor asset health, wear, and performance with KPIs (Key Performance Indicators) determined by the customer and the organization's objectives. The Digital Twin is powered by PredixTM, an industrial platform built to manage huge amounts of data and run analytic algorithms. General Electric Company provides extra "control knobs" or "dimensionality" that can be utilized to improve the operation of the system or asset modeled with GE Digital Twin. Final Words Given the numerous advantages of digital twin manufacturing, the potential for digital twins to be used in manufacturing is virtually endless in the near future. There will be a slew of new advancements in the field of digital twin manufacturing. As a result, digital twins are continually acquiring new skills and capabilities. The ultimate goal of all of these enhancements is to create the insights necessary to improve products and streamline processes in the future. FAQ What is a digital twin in manufacturing? The digital twins could be used to monitor and enhance a production line or perhaps the whole manufacturing process, from product design to production. How digital twin benefit manufacturers? Using digital twins to represent products and manufacturing processes, manufacturers can save assembly, installation, and validation time and costs. What is a digital thread? A digital twin is a realistic version of a product or system that replicates a company's equipment, controls, workflows, and systems. The digital thread, on the other hand, records a product's life cycle from creation to dissolution. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What is a digital twin in manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "The digital twins could be used to monitor and enhance a production line or perhaps the whole manufacturing process, from product design to production." } },{ "@type": "Question", "name": "How digital twin benefit manufacturers?", "acceptedAnswer": { "@type": "Answer", "text": "Using digital twins to represent products and manufacturing processes, manufacturers can save assembly, installation, and validation time and costs." } },{ "@type": "Question", "name": "What is a digital thread?", "acceptedAnswer": { "@type": "Answer", "text": "A digital twin is a realistic version of a product or system that replicates a company's equipment, controls, workflows, and systems. The digital thread, on the other hand, records a product's life cycle from creation to dissolution." } }] }

Read More

How to Overcome the Additive Manufacturing Challenges in Aerospace

Article | December 6, 2021

Aerospace manufacturing and design are getting advanced with additive manufacturing. However, the limitations of traditional manufacturing techniques sometimes make it incompetent to produce technologically oriented products. Additive Manufacturing (AM)helps the aircraft system run more efficiently by creating lightweight aircraft parts. This is one of the reasons that additive manufacturing is gaining traction in aerospace and other industries. According to recent analysis and data, the global additive manufacturing market is expected to grow from USD 9.52 billion in 2020 to USD 27.91 billion in 2028. The expanding technologies and materials used in additive manufacturing will indeed stimulate industry growth shortly. It’s important to note that there isn’t one channel that is the silver bullet. Most of the time, a combination of different channels will help drive a more powerful outcome.” – Wendy Lee, Director of Marketing at Blue Prism However, the aerospace industry encounters some challenges with additive manufacturing, which is the focus of this article. Scalability, multi-material capabilities, professional workers, high-cost materials, and quality compliance norms are all constraints that aerospace professionals are dealing with. Here we will discuss the top three challenges of additive manufacturing in aerospace and their solutions. Future of Additive Manufacturing in the Aerospace Industry Even though additive manufacturing has been around for a while, it has only lately become advanced enough to be used in the aerospace sector. In the aerospace business, additive manufacturing has the potential to deliver significant benefits. Cost savings, design freedom, weight reduction, shorter time to market, fewer waste materials, better efficiency, and on-demand production are just some of the benefits. Although additive manufacturing cannot make every part, it provides an exciting opportunity to explore feasible alternatives, either supplementing or replacing traditional manufacturing processes. However, it must be taken into account early in the development phase. Additionally, knowledge must be embedded in aircraft design teams to ensure the successful use of additive manufacturing. However, in recent years, AM has become more prevalent in end-to-end manufacturing. According to Deloitte University Press, the future of AM in aerospace may include: Directly embedding additively produced electronics Wings printing 3D printing engine parts Making battlefield repair components Top 3 Additive Manufacturing Challenges in the Aerospace Industry and Solutions While problems are inherent in any new technology, experts overcome them by identifying solutions. Let's look at the top three challenges that the aerospace industry is currently facing and the solutions to overcome them. Lack of Qualified Experts Using 3D printers in production and automating work processes are skills that are lacking. However, the obstacles are natural, and the skilled manufacturing workforce is aging and reluctant to adapt to new design models. This is creating the skills gaps surrounding manipulating AM technology. How to Overcome Less time spent educating employees is better for business. For example, the US National Additive Manufacturing Institute and the European ADMIRE initiative offer accelerated courses via remote learning websites. Of course, you'll need to provide numerous additive manufacturing opportunities to attract the key technologists, either on-site or off-site. They will oversee new hires' activities and help them translate their knowledge of 3D printing into designs and final items. Over Budget Material The typical cost of AM equipment is $300,000. Industrial consumables cost between $100 and $150 per item (although the final price is formed after choosing the material; plastic, for example, is the most budget-friendly option). How to Overcome To overcome this obstacle, you must plan a long-term implementation strategy based on the manufacturing-as-a-service model. On-demand manufacturing reduces manufacturing costs and speeds up product development. You can also go with cheap 3D printers that use cheap welding wire that hasjust come onto the market. They cost $1,200 and may suit your needs. Fresh Quality Compliance Guidelines As 3D printing and CNC manufacturing technologies constantly evolve, there are no established norms or regulations for 3D printed objects. However, 3D printed solutions do not always match traditional quality, durability, and strength. For example, a 3D-printed mechanical part. Can someone order 500 similar parts a few months later? Consistency standards and product post-processing may have a negative impact in such circumstances. So, in such a case, traditional manufacturing wins over 3D printing. How to Overcome You might endeavor to set quality criteria for your 3D-printed products to ensure they are comparable to traditional ones. You can also apply the ANSI AMSC and America Makes standards, which define quality criteria for 3D printed products. How Boeing Applies Additive Manufacturing Technology? Boeing is focusing its efforts on leveraging and speeding up additive manufacturing to transform its manufacturing system and support its growth. The company operates 20 additive manufacturing facilities worldwide and collaborates with vendors to supply 3D-printed components for its commercial, space, and defense platforms. Boeing is now designing missiles, helicopters, and airplanes using 3D printing technology. A small internal team contributes roughly 1,000 3D-printed components to the company's flight projects. Boeing claims that addressing design as an "integrated mechanical system" considerably improves manufacturability and lowers costs. Final Words Additive manufacturing is altering the way the aerospace industry designs and manufactures aircraft parts. Aerospace advanced manufacturing is making aircraft production easier. We've explored solutions to some of the snags that you may encounter. However, other concerns, such as limited multi-material capabilities and size constraints, require solutions, and industry specialists are working on them. Despite these challenges, additive manufacturing is still booming and rocking in a variety of industries. FAQ Why is additive manufacturing used in Aerospace? It allows the industry to build quality parts quickly and inexpensively. Reduce waste and build parts for aircraft that are difficult to manufacture using existing methods. How does additive manufacturing help in Aerospace applications? Environmental control system (ECS) ducting, custom cosmetic aircraft interior components, rocket engine components, combustor liners, composite tooling, oil and fuel tanks, and UAV components are examples of typical applications. 3D printing helps in producing solid, complicated pieces with ease. Which aerospace firms use additive manufacturing/3D printing? Boeing and Airbus are two of the many aircraft businesses that use additive-created parts in their planes. Boeing incorporates additive manufacturing (AM) components into both commercial and military aircraft. Airbus also employs AM metal braces and bleed pipes on the A320neo and A350 XWB aircraft. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "Why is additive manufacturing used in Aerospace?", "acceptedAnswer": { "@type": "Answer", "text": "It allows the industry to build quality parts quickly and inexpensively. Reduce waste and build parts for aircraft that are difficult to manufacture using existing methods." } },{ "@type": "Question", "name": "How does additive manufacturing help in Aerospace applications?", "acceptedAnswer": { "@type": "Answer", "text": "Environmental control system (ECS) ducting, custom cosmetic aircraft interior components, rocket engine components, combustor liners, composite tooling, oil and fuel tanks, and UAV components are examples of typical applications. 3D printing helps in producing solid, complicated pieces with ease." } },{ "@type": "Question", "name": "Which aerospace firms use additive manufacturing/3D printing?", "acceptedAnswer": { "@type": "Answer", "text": "Boeing and Airbus are two of the many aircraft businesses that use additive-created parts in their planes. Boeing incorporates additive manufacturing (AM) components into both commercial and military aircraft. Airbus also employs AM metal braces and bleed pipes on the A320neo and A350 XWB aircraft." } }] }

Read More

Spotlight

SEACAD Technologies

SEACAD Technologies Pte Ltd is the first, longest standing, and still remains the largest SolidWorks reseller in Singapore. With the most experienced and professional team in the local marketplace, SEACAD is uniquely qualified to provide the best sales support, implementation, training and technical resources to our customers.

Events