How GrabCAD Print Medical 3D Printing Software Supports the Stratasys Digital Anatomy Printer

SYLVIA ROSEN| October 11, 2019
HOW GRABCAD PRINT MEDICAL 3D PRINTING SOFTWARE SUPPORTS THE STRATASYS DIGITAL ANATOMY PRINTER
Medical 3D printing just got easier with the new J750 Digital Anatomy 3D Printer from Stratasys! This printer has been designed to replicate the feel, responsiveness, and biomechanics of human anatomy in medical 3D models! We’re giving surgeons a more realistic training environment in no-risk settings, explains Stratasys Healthcare Business Unit Head Eyal Miller.

Spotlight

Ceresana

As one of the world’s leading market research companies, Ceresana is specialized in the plastics, chemicals, packaging, and industrial goods sectors. For 17 years, companies have benefited from high-quality industry analyses and forecasts. More than 170 market reports provide 10,000 customers with the knowledge base for their sustainable success.

OTHER ARTICLES

Quality Digest Defines Enhanced Webinar Events

Article | May 18, 2021

For twenty years as an editorial contributor to Quality Digest magazine, I have had the pleasure of authoring or collaborating more than 80 articles for the publication. During this two-decade tenure, I have worked with Dirk Dusharme (pictured left), Editor in Chief of Quality Digest. Quality Digest’s website receives more than three million page views each year, which provide editorial content, live broadcasts, videos, and on-demand webinars presented by industry experts on international quality standards, leadership, manufacturing, metrology, statistical process control, training, and more. Quality Digest continues its important role as companies navigate a post-COVID reality with a critical role of safety, quality, efficiency, and resiliency. Quality elements are no longer an after-thought. It is essential when examining automation, lean manufacturing, and new paradigms for best practice. During COVID, all of us became more remote savvy and the demand for visionary content and information essential. According to Dusharme, “Since their debut almost a decade ago, Quality Digest's "enhanced" webinar events have raised the bar for the traditional webinar experience. Our audience has come to expect concise, informative, and engaging presentations with subject matter experts who know what they are talking about. Apart from the traditional quality topics, we delve into areas that broaden our audience’s knowledge. These topics range from cybersecurity, to supply chain management, to understanding and dealing with cognitive biases. Our goal is to provide up-to-date, actionable information that our audience can immediately put to use. Live video feeds of the presenters and the products, interactive Q&A sessions, surveys, and valuable downloads all make up our usual webinar experience, followed by next-day access to the on-demand recording and materials.” Enhanced Webinars from Quality Digest feature real-time streaming video of host, subject matter expert, and a case study in action. Users can email questions, chat, or download files in real-time. This modality is ideal for visual case studies/product demos, team or customer training, and new product/new service announcements.

Read More

Computer Aided Manufacturing (CAM): Major Challenges and Their Solutions

Article | December 16, 2021

Computer-aided manufacturing (CAM) is a technology that revolutionized the manufacturing business. Pierre Bézier, a Renault engineer, produced the world's first real 3D CAD/CAM application, UNISURF CAD. His game-changing program redefined the product design process and profoundly altered the design and manufacturing industries. So, what is CAM in its most basic definition? Computer-aided manufacturing (CAM) is the application of computer systems to the planning, control, and administration of manufacturing operations. This is accomplished by using either direct or indirect links between the computer and the manufacturing processes. In a nutshell, CAM provides greater manufacturing efficiency, accuracy, and consistency. As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity.” – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca In light of the numerous advantages and uses of computer-aided manufacturing, manufacturers have opted to use it extensively. The future of computer-aided manufacturing is brightening due to the rapid and rising adoption of CAM. According to Allied Market Research, the global computer-aided manufacturing market was worth $2,689 million in 2020 and is expected to reach $5,477 million by 2028, rising at an 8.4% compound annual growth rate between 2021 and 2028. Despite all this, each new development has benefits and challenges of its own. In this article, we'll discuss the benefits of CAM, the challenges that come with it, and how to deal with them. Let's start with the advantages of computer-aided manufacturing. Benefits of Computer Aided Manufacturing (CAM) There are significant benefits of using computer-aided manufacturing (CAM). CAM typically provides the following benefits: Increased component production speed Maximizes the utilization of a wide variety of manufacturing equipment Allows for the rapid and waste-free creation of prototypes Assists in optimizing NC programs for maximum productivity during machining Creates performance reports automatically As part of the manufacturing process, it integrates multiple systems and procedures. The advancement of CAD and CAM software provides visual representation and integration of modeling and testing applications. Greater precision and consistency, with similar components and products Less downtime due to computer-controlled devices High superiority in following intricate patterns like circuit board tracks Three Challenges in CAM and Their Solutions We have focused on the three primary challenges and their solutions that we have observed. Receiving Incomplete CAD Updates Receiving insufficient CAD updates is one of the challenges. If, for example, the part update from a CAD engineer does not include the pockets that are required in the assembly, to the CAM engineer. SOLUTION: A modeler that enables developers of a CAM programs to create intuitive processes for features such as feature extraction and duplication across CAD version updates. A modeler is capable of recognizing and extracting the pocket's architecture and the parameters that define it. Additionally, the CAM application can enable the engineer to reproduce the pocket in a few simple steps by exploiting the modeler's editing features such as scaling, filling, extruding, symmetrical patterning, and removing. Last Minute Design Updates The second major challenge is last-minute design changes may impact manufacturers as a result of simulation. SOLUTION: With 3D software components, you may create applications in which many simulation engineers can work together to make design modifications to the CAD at the same time, with the changes being automatically merged at the end. Challenging Human-driven CAM Manufacturing The third major challenge we have included is that CAM engineers must perform manual steps in human-driven CAM programming, which takes time and requires expert CAM software developers. Furthermore, when the structure of the target components grows more complicated, the associated costs and possibility of human failure rise. SOLUTION: Self-driving CAM is the best solution for this challenge. Machine-driven CAM programming, also known as self-driving CAM, provides an opportunity to improve this approach with a more automated solution. Preparing for CAM is simple with the self-driving CAM approach, and it can be done by untrained operators regardless of part complexity. The technology handles all of the necessary decisions for CAM programming operations automatically. In conclusion, self-driving CAM allows for efficient fabrication of bespoke parts, which can provide substantial value and potential for job shops and machine tool builders. Computer Aided Manufacturing Examples CAM is widely utilized in various sectors and has emerged as a dominant technology in the manufacturing and design industries. Here are two examples of sectors where CAM is employed efficiently and drives solutions to many challenges in the specific business. Textiles Virtual 3D prototype systems, such as Modaris 3D fit and Marvellous Designer, are already used by designers and manufacturers to visualize 2D blueprints into 3D virtual prototyping. Many other programs, such as Accumark V-stitcher and Optitex 3D runway, show the user a 3D simulation to show how a garment fits and how the cloth drapes to educate the customer better. Aerospace and Astronomy The James Webb Space Telescope's 18 hexagonal beryllium segments require the utmost level of precision, and CAM is providing it. Its primary mirror is 1.3 meters wide and 250 kilograms heavy, but machining and etching will reduce the weight by 92% to just 21 kilograms. FAQ What is the best software for CAM? Mastercam has been the most extensively utilized CAM software for 26 years in a row, according to CIMdata, an independent NC research business. How CAD-CAM helps manufacturers? Customers can send CAD files to manufacturers via CAD-CAM software. They can then build up the machining tool path and run simulations to calculate the machining cycle times. What is the difference between CAD and CAM? Computer-aided design (CAD) is the process of developing a design (drafting). CAM is the use of computers and software to guide machines to build something, usually a mass-produced part.

Read More

Scaling, Optimizing & Pivoting with Smart Manufacturing Industry 4.0

Article | January 20, 2022

A smart factory that leverages Industry 4.0 concepts to elevate its operations has long been a model for other industries that are still figuring out how to travel the digital manufacturing route. Smart manufacturing technology is all you need to know if you're looking to cash in on this trend. “Industry 4.0 is not really a revolution. It’s more of an evolution.” – Christian Kubis In this article, we'll look at the advantages that many smart factory pioneers are getting from their smart factories. In addition, we will look at the top smart factory examples and understand how they applied the Industry 4.0 idea and excelled in their smart manufacturing adoption. Industry 4.0 Technology Benefits Manufacturing Industry 4.0 has several benefits that can alter the operations of manufacturers. Beyond optimization and automation, smart manufacturing Industry 4.0 aims to uncover new business prospects and models by increasing the efficiency, speed, and customer focus of manufacturing and associated industries. Key benefits of Manufacturing Industry 4.0 in production include: Improved productivity and efficiency Increased collaboration and knowledge sharing Better agility and adaptability Facilitates compliance Improved customer experience Reduced costs and increased profitability Creates opportunities for innovation Increased revenues World Smart Factory Case Studies and Lessons to Be Learned Schneider Electric, France SAS Schneider Electric's le Vaudreuil plant is a prime example of a smart factory Industry 4.0, having been regarded as one of the most modern manufacturing facilities in the world, utilizing Fourth Industrial Revolution technologies on a large scale. The factory has included cutting-edge digital technology, such as the EcoStruxureTM Augmented Operator Advisor, which enables operators to use augmented reality to accelerate operation and maintenance, resulting in a 2–7% increase in productivity. EcoStruxureTM Resource Advisor's initial deployment saves up to 30% on energy and contributes to long-term improvement. Johnson & Johnson DePuy Synthes, Ireland DePuy Synthes' medical device manufacturing plant, which started in 1997, just underwent a multimillion-dollar makeover to better integrate digitalization and Industry 4.0 smart manufacturing. Johnson & Johnson made a big investment in the Internet of Things. By linking equipment, the factory used IoT technology to create digital representations of physical assets (referred to as “digital twins”). These digital twins resulted in sophisticated machine insights. As a result of these insights, the company was able to reduce operating expenditures while simultaneously reducing machine downtime. Bosch, China Bosch's Wuxi factory's digital transformation uses IIoT and big data. The company integrates its systems to keep track of the whole production process at its facilities. Embedding sensors in production machinery collects data on machine status and cycle time. When data is collected, complicated data analytics tools analyze it in real-time and alert workers to production bottlenecks. This strategy helps forecast equipment failures and allows the organization to arrange maintenance ahead of time. As a consequence, the manufacturer's equipment may run for longer. The Tesla Gigafactory, Germany According to Tesla, the Berlin Gigafactory is the world's most advanced high-volume electric vehicle production plant. On a 300-hectare facility in Grünheide, it produces batteries, powertrains, and cars, starting with the Model Y and Model 3. For Tesla, the goal is not merely to make a smart car, but also to construct a smart factory. The plant's photographs reveal an Industry 4.0 smart factory with solar panels on the roof, resulting in a more sustainable production method. On its official website, Tesla claimed to use cutting-edge casting methods and a highly efficient body shop to improve car safety. Tesla's relentless pursuit of manufacturing efficiency has allowed them to revolutionize the car industry. Haier, China The SmartFactoryKL was established to pave the way for the future's "intelligent factory." It is the world's first manufacturer-independent Industry 4.0 production facility, demonstrating the value of high-quality, flexible manufacturing and the effectiveness with which it can be deployed. The last four years, SmartFactoryKL has been guided by particular strategic objectives that drive innovation; the aim is to see artificial intelligence integrated into production. Two instances of AI-driven transformations include an "order-to-make' mass customization platform and a remote AI-enabled, intelligent service cloud platform that anticipates maintenance needs before they occur. Final Words Enabling smart manufacturing means using the latest technology to improve processes and products. The aforementioned smart factory examples are industry leaders and are thriving by implementing Industry 4.0 technology. Small and medium-sized enterprises (SMEs) may use these smart factory examples to learn about the adoption process, challenges, and solutions. Industry 4.0 is aimed at improving enterprises and minimizing human effort in general. So adopt the smart factory concept and be productive. FAQ What is the difference between a smart factory and a digital factory? The digital factory enables the planning of factories using virtual reality and models, whereas the smart factory enables the operation and optimization of factories in real time. Where does Industry 4.0 come from? The term "Industry 4.0" was coined in Germany to represent data-driven, AI-powered, networked "smart factories" as the fourth industrial revolution's forerunner.

Read More

IoT in Manufacturing: How It's Changing the Way We Do Business

Article | December 10, 2021

IoT in the manufacturing industry introduces a superior technology that is coming up as a blessing for the industry. Manufacturers are enjoying one-of-a-kind benefits and returns on their reinvestments in IoT. Benefits such as enhanced productivity, work safety, reduced downtime, cost-effective operations, and more such benefits of IoT in manufacturing make it more and more popular with each passing day. The global IoT market is estimated to reach a value of USD 1,386.06 billion by 2026 from USD 761.4 billion in 2020 at a CAGR of 10.53 percent over the forecast period of 2021-2026. So the whole worldwide market of IoT has a bright future in the following years. “As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity.” – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca Let’s check out below some exciting facts about IoT in manufacturing and see how IoT makes a difference in the manufacturing industry. IoT in Manufacturing: Some Interesting Facts According to PwC, 91% of industrial/manufacturing enterprises in Germany invest in "digital factories" that use IoT solutions. According to the International Federation of Robotics (IFR), China employs more industrial robots than any other country (many of which are connected to the internet in some way). According to IoT Analytics, the industrial sector spent more than $64 billion on IoT in 2018 and expects investment in Industry 4.0 to reach $310 billion by 2023. According to the Eclipse Foundation, most IoT developers are focused on developing smart agriculture systems (26%), while industrial automation is another big focus area (26%). However, home automation is dwindling in popularity, accounting for just 19% of projects. How Does IoT Work for the Manufacturing Industry? The Internet of Things (IoT) is a network of interconnected devices that communicate with one another and with other networks. While IoT-enabled devices are capable of various tasks, they are primarily employed to collect data and carry out specific tasks. The implementation of the Internet of Things in manufacturing is often referred to as the IIoT, or Industrial Internet of Things. IoT makes use of 'smart' devices to collect, process, and act on data. These intelligent devices are equipped with sensors and other software that enable them to communicate and exchange data inside the network. IoT-enabled equipment gives crucial real-time data that enables manufacturers or machine operators to make informed decisions. So, how does it function in practice? Sensors capture data from the system and transfer it to the cloud, where it can be analyzed. The data is transferred to the quality assurance system. The data that has been analyzed is forwarded to the end-user. How the IoT is Improving Manufacturing Business Operations The Internet of Things (IoT) has numerous benefits for the manufacturing industry. We'll go over some of the significant benefits that the Internet of Things brings to the manufacturing business. Energy Efficiency Solutions Energy is a high cost in manufacturing. Unfortunately, the current industrial energy infrastructure can only track excessive energy consumption. The utility bills include the factory's energy consumption records. But, unfortunately, nobody can break down energy consumption to the device level and find out the underperforming pieces. Some energy usage monitoring tools exist, but they only provide partial data, making system analysis difficult. IoT can help by giving device-level energy data. The sensors will detect any underperforming devices in the network and alert you so you can take action. As a result, the technology can help you reduce energy waste and find other ways to save it. Market Forecasting Data is required to determine trends and quality of production at a manufacturing facility. It also helps manufacturers plan and anticipates changes. These forecasts can help with inventory management, employment, cost control, and other operational procedures. Thus, IoT technology makes it easier to foresee and optimize customer requirements. Proactive Maintenance The Internet of Things (IoT) uses sensors to gather data about assets' health and productivity. In addition, it uses advanced analytics to give actionable information. These are presented on an appealing dashboard connected to your smart device. This allows for predictive maintenance to be used in the manufacturing industry. Superior Product Quality Every manufacturer is determined to produce a high-quality product at a low cost. Therefore, a minor quality modification can have a significant influence on the manufacturing firm. Customer happiness, waste reduction, sales, and profit can all benefit from high-quality products. But making high-quality products isn't easy. The Internet of Things (IoT) can assist you in this endeavor. Poorly set, calibrated, and maintained equipment are some of the main reasons for low-quality products. Worst of all, many small things sometimes go ignored as the final product seems perfect. Quality tests show the product is fine, but your consumers start having problems after a couple of months. Imagine the resources needed to identify and correct the problem. Sensors in an IoT network detect even minimal tweaks in setup and alert operators. The team might momentarily stop production to address the issue before the production cycle gets complete. Rapid and Informed Decision-Making The IoT can dramatically improve organizational decision-making. It unlocks vital data about network equipment performance and delivers it to the right person. Managers and field operators can use this data to improve plant processes and overall production. In addition to these significant benefits, IoT in manufacturing can help manufacturers improve their manufacturing operations and construct a unit that meets the vision of the smart factory of 2040. The future beyond IoT would be the icing on the cake for all of us, as technology has always amazed us. Imagine the day when IoT and AI merge, and the virtual gadgets controlled by IoT are the next major milestone. Then, the ideal combination of robotics, AI, and VR may reduce the manufacturing plant size and cost while increasing the output to a level that is unimaginable and unattainable as of now. Airbus Improved Production Efficiency with Its Factory of the Future Concept It's a massive task for a commercial airliner to be assembled. The expense of making a mistake throughout making such a craft can be significant, as there are millions of parts and thousands of assembly phases. Airbus has established a digital manufacturing effort called Factory of the Future to optimize operations and increase production capacity. The company has installed sensors on factory floor tools and machinery and supplied workers with wearable technologies, such as industrial smart glasses, to reduce errors and improve workplace safety. The wearable allowed for a 500% increase in efficiency while eliminating nearly all mistakes in one process named cabin seat marking. Final Words While the benefits of IoT devices have long been a topic of discussion among technology enthusiasts, the incorporation of IoT in manufacturing is creating a new buzz in the industry. The benefits of IoT in manufacturing, such as remote analysis of operations, processes, and products, are assisting manufacturers in establishing a more productive manufacturing unit. As a result of these benefits, IoT use in manufacturing is accelerating. Recognize the IoT's potential and take a step toward incorporating it into your manufacturing operation in 2022. FAQ What is the Industrial Internet of Things (IIoT)? IIoT stands for Industrial Internet of Things. It uses data to improve industrial efficiency. To enhance industrial performance, it uses embedded sensors, cloud data, and connected devices. Why is the IoT changing manufacturing? Real-time monitoring of machines and accurate reporting for better decisions are possible through IoT. This improves business strategies and project control. Thus, the Internet of Things has a significant impact on the profitability of any manufacturing company. How does the IoT transform the way we do business? We can use data collected by IoT devices to improve efficiency and help organizations make better decisions. They tell organizations the truth, not what they hope or believe. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What is the Industrial Internet of Things (IIoT)?", "acceptedAnswer": { "@type": "Answer", "text": "IIoT stands for Industrial Internet of Things. It uses data to improve industrial efficiency. To enhance industrial performance, it uses embedded sensors, cloud data, and connected devices." } },{ "@type": "Question", "name": "Why is the IoT changing manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Real-time monitoring of machines and accurate reporting for better decisions are possible through IoT. This improves business strategies and project control. Thus, the Internet of Things has a significant impact on the profitability of any manufacturing company." } },{ "@type": "Question", "name": "How does the IoT transform the way we do business?", "acceptedAnswer": { "@type": "Answer", "text": "We can use data collected by IoT devices to improve efficiency and help organizations make better decisions. They tell organizations the truth, not what they hope or believe." } }] }

Read More

Spotlight

Ceresana

As one of the world’s leading market research companies, Ceresana is specialized in the plastics, chemicals, packaging, and industrial goods sectors. For 17 years, companies have benefited from high-quality industry analyses and forecasts. More than 170 market reports provide 10,000 customers with the knowledge base for their sustainable success.

Events