Article | July 23, 2020
Robots now come in many sizes, and in configurations of two to seven axes. They can do simple or complicated work, even surgery, and are easier to integrate than ever into any manufacturing or processing environments, including food zones, clean rooms and warehouses. But what’s most important is to know which type of robot articulated, cartesian, SCARA, delta or cobot fits your needs from both capability and cost standpoints.
Read More
Manufacturing Technology
Article | December 6, 2021
Additive Manufacturing (AM) uses computer-aided design (CAD) or 3D object scanners to create accurate geometric features. In contrast to traditional manufacturing, which frequently involves milling or other processes to eliminate superfluous material, these are produced layer by layer, as with a 3D printing process.
The global additive manufacturing market is expected to grow at a 14.42 percent annual rate from USD 9.52 billion in 2020 to USD 27.91 billion in 2028, according to reports and data. Overall, the worldwide 3D printing industry is gaining traction due to various reasons, some of which are listed below.
Significantly, greater resolution
Reduced manufacturing costs as a result of recent technology breakthroughs
Ease of creating customised goods
Increasing possibilities for printing with diverse materials
Funding by the government for 3D printing ventures
Additive manufacturing is available or may be implemented in various procedures, which is the primary objective of this article. First, we'll look at the seven additive manufacturing processes and which one is the best to use. So let us begin.
“Don’t be afraid to go outside of your industry to learn best practices. There might be something that surprises you or inspires you to try in your line of work.”
– Emily Desimone, Director of Global Marketing at SLM Solutions
Additive Manufacturing Processes
There are numerous diverse additive manufacturing processes, each with its own set of standards. Here are the seven additive manufacturing procedures that many manufacturers consider based on their benefits from each process, or whichever approach best suits their product requirements.
Material Jetting
This additive manufacturing process is quite similar to that of conventional inkjet printers, in which material droplets are selectively placed layer by layer to build a three-dimensional object. After completing a layer, it is cured with UV radiation.
VAT Photo Polymerization
This procedure employs a technology called photo polymerization, in which radiation-curable resins or photopolymers are utilized to ultraviolet light to generate three-dimensional objects selectively. When these materials are exposed to air, they undergo a chemical reaction and solidify. Stereo lithography, Digital Light Processing, and Continuous Digital Light Processing are the three primary subcategories.
Binder Jetting
Binder jetting is a process that deposits a binding agent, typically in liquid form, selectively onto powdered material. The print head deposits alternating layers of bonding agent and construction material and a powder spreader to create a three-dimensional object.
Material Extrusion
S. Scott Crump invented and patented material extrusion in the 1980s using Fused Deposition Modeling (FDM). The continuous thermoplastic filament is fed through a heated nozzle and then deposited layer by layer onto the build platform to produce the object.
Powder Bed Fusion
Powder bed fusion procedures, particularly selective laser sintering, were the pioneers of industrial additive manufacturing. This approach melts the powdered material and fuses it using a laser or electron beam to form a tangible item. The primary kinds of powder bed fusion are direct metal laser sintering, selective laser sintering, multi-jet fusion, electron beam melting, selective laser melting, and selective heat sintering.
Sheet Lamination
Sheet lamination is a catch-all term encompassing ultrasonic additive manufacturing, selective deposition lamination, and laminated object manufacturing. All of these technologies stack and laminate sheets of material to form three-dimensional objects. After the object is constructed, the parts' undesirable areas are gradually removed layer by layer.
Directed Energy Deposition
Directed energy deposition technology employs thermal energy to melt and fuse the materials to form a three-dimensional object. These are pretty similar to welding processes, but are much more intricate.
Which Additive Manufacturing Process is best? Why?
Based on three fundamental factors, additive manufacturing techniques are categorized into seven types. First, the way material is solidified is determined first by the type of material employed, then by the deposition technique, and finally by how the material is solidified.
The end-user often chooses an additive manufacturing technique that best suits his requirements, followed by the explicit material for the process and application, out of the seven basic additive manufacturing processes.
Polymer materials are commonly used in AM techniques because they are adaptable to various procedures and can be modified to complicated geometries with high precision. Carbon-based compounds are used to strengthen polymers. Polymers, both solid and liquid, have been widely used due to the variety of shapes, formability, and end-use qualities available. Wherever the light-activated polymer contacts the liquid's surface, it instantly solidifies.
Photo polymerization, powder bed fusion, material jetting, and material extrusion are the most common additive manufacturing procedures for polymers. The materials employed in these processes can be liquid, powder, or solid (formed materials such as polymer film or filament).
How BASF is Using Additive Manufacturing
BASF is a chemical company. BASF, one of the world's major chemical companies, manufactures and provides a range of 3D printing filaments, resins, and powders within its extensive material portfolio.
The company, well-known in the 3D printing sector, has formed major material agreements with several 3D printer manufacturers, including HP, BigRep, Essentium, BCN3D, and others.
BASF went even further in 2017 by establishing BASF 3D printing Solutions GmbH (B3DPS) as a wholly-owned subsidiary to expand the company's 3D printing business. In addition, BASF stated last year that B3DPS would change its name to Forward AM.
BASF's role in the 3D printing business, however, is not limited to material development. BASF has made several investments in 3D printing companies over the years, including the acquisition of Sculpteo, one of the significant French 3D printing service bureaus, last year.
BASF sees 3D printing as having a bright future. With the growing popularity of professional 3D printers, all of these systems will eventually require robust, high-quality polymer materials to perform at their best – and BASF has been paving the way to becoming one of the leading solution providers.
Final Words
All additive manufacturing procedures are unique and helpful in their way. Still, some have additional advantages over others, such as the material used, highresolution, precision, and the ability to build complicated parts. Because of these added benefits, photopolymerization, material jetting, powder bed fusion, and material extrusion are preferred over others. Therefore, choose the AM process that is best suited to your manufacturing business and will assist you in achieving the desired final product output.
FAQs
What are the benefits of additive manufacturing?
AM enables manufacturers to reduce waste, prototyping costs, and customization while conserving energy and increasing production flexibility. Additionally, it benefits the supply chain and the environment, encouraging businesses to increase their manufacturing sustainability.
What is the major challenge in additive manufacturing?
Many businesses are struggling with the current difficulty of producing large and odd-sized parts using additive manufacturing. So, this can be considered a significant challenge in additive manufacturing.
What are the steps of additive manufacturing?
The additive manufacturing steps are divided into four steps as below,
Step1 - Design a model with CAD software
Step2 -Pre-processing
Step3 -Printing
Step4 - Post-processing
{
"@context": "https://schema.org",
"@type": "FAQPage",
"mainEntity": [{
"@type": "Question",
"name": "What are the benefits of additive manufacturing?",
"acceptedAnswer": {
"@type": "Answer",
"text": "AM enables manufacturers to reduce waste, prototyping costs, and customization while conserving energy and increasing production flexibility. Additionally, it benefits the supply chain and the environment, encouraging businesses to increase their manufacturing sustainability."
}
},{
"@type": "Question",
"name": "What is the major challenge in additive manufacturing?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Many businesses are struggling with the current difficulty of producing large and odd-sized parts using additive manufacturing. So, this can be considered a significant challenge in additive manufacturing."
}
},{
"@type": "Question",
"name": "What are the steps of additive manufacturing?",
"acceptedAnswer": {
"@type": "Answer",
"text": "The additive manufacturing steps are divided into four steps as below,
Step1 - Design a model with CAD software
Step2 - Pre-processing
Step3 - Printing
Step4 - Post-processing"
}
}]
}
Read More
Operations
Article | December 8, 2021
The manufacturing production schedule is a critical aspect that enables the manufacturing business to complete each production activity precisely and on time. Allocating different raw materials, resources, or processes to distinct project phases is called a production schedule. Its goal is to make your manufacturing process as efficient and cost-effective as possible in terms of resources and labor — all while delivering products on schedule.
As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity."
– Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca
So, how is the overall production schedule managed?
According to businesswire, the global APS (Advanced Production Planning and Scheduling) software market was valued at $1,491.22 million in 2020 and is anticipated to raise $2,941.27 million by 2028 expanding at an 8.86 percent CAGR from 2020 to 2028.
Some software and tools are available to assist manufacturing organizations in properly scheduling production planning, including MaxScheduler, TACTIC, MRPeasy, and Gantt charts. Though there are numerous software programs available on the market for production scheduling, the most crucial aspect is determining which elements to consider when planning production.
This blog will look at the five most important factors to consider while planning the production schedule.
Five Elements to Consider When Scheduling Production
As we saw in the introduction, production scheduling is used in the manufacturing process to assign plant and machinery resources, schedule human resources, plan production processes, and purchase materials.
So, what are the primary components or stages of this production scheduling process? Let's take a quick look at each of them.
Planning to Make the Best Use of the Company's Resources
The role of planning in production scheduling is to use the company's resources to maintain a regular production flow. As a result, downtime is decreased, and bottlenecks are minimized, allowing production to be optimized. For production scheduling, two forms of planning can be used:
Dynamic Planning: Dynamic planning is carried out under the idea that process stages will alter. So, materials must be ready, but production cannot begin until demand is decided.
Static Planning: Static planning is done keeping in mind that all process steps will be completed on schedule and without adjustments.
Routing to Determine the Order of Actions
A “bill of materials” is used in discrete manufacturing to specify what things are needed and in what quantities.
Routing determines the path and sequence of required phases of the process. It may involve in-house operations, but it may also comprise sub-contracted components that must be returned to the production flow for final assembly.
Scheduling to Make Use of Predetermined Planning Levels
To manufacture products from components or raw materials, scheduling makes use of the previously set planning level. As a result, it is time-dependent and must meet the demand outlined at the planning level.
Each department, product, and procedure can have their own unique set of timetables. Sub-schedules for sub-assemblies or mixes and blends may be defined by department-specific master production schedules, utilized at the highest level to define product timeframes.
Dispatching to Decide on Immediate Actions
Dispatching assigns the following jobs to be done from a subset of the production queue. Dispatching is utilized to make quick decisions. This is in contrast to planning, which involves the planning of future actions. Dispatching is utilized in both pull and push production systems.
Execution to Ensure that all Processes are Carried out Correctly
Production scheduling must rely on proper execution to ensure that all processes are completed appropriately and in the sequence planned.
It requires everyone to know what they are expected to do and when they are expected to do it. Execution requires knowledgeable management decisions, well-trained employees, correct data in the manufacturing plan and schedule, and consistent sales statistics and forecast numbers. All must be present for the organization to carry out its production plan and fulfill orders.
How MRPeasy – A Production Scheduling Software Assist Manufacturing Companies in Scheduling Their Production?
MRPeasy is a cloud-based material requirements planning (MRP) application explicitly designed for small manufacturing units. Its primary functions are purchase order management, forecasting, and inventory management.
This software simplifies the process of scheduling production. It enables you to evaluate all of your anticipated manufacturing orders (MO). The bill of materials (BOM), purchasing, and stocking are all maintained in one location, allowing you to quickly book inventory and increase purchase orders (PO) for acquired parts.
MRPeasy enables you to:
Obtain all of the detailed information on all of your MOs
Consider MOs as a single block or as distinct operations.
Drag-and-drop operations and operations to reschedule
Calendar or Gantt chart views are available for monitoring scheduled orders.
Additionally, you can manage MOs smoothly. With the production planning component, you may create, amend, and update MOs. This app compiles an exhaustive list of all your MOs. You can track their progress based on the status of an order or a part's availability. Additionally, you can search for, filter, and export your MOs.
Final Words
How to schedule production for your organization requires extensive research, planning, and analysis of overall product demand as well as a grasp of the time required to meet the demand. Production scheduling techniques such as job-based planning, batch method, flow method, and others help develop a productive manufacturing production schedule. Include the elements mentioned above in your manufacturing scheduling to get the best possible benefits, such as better production efficiency, lower production costs, and on-time product delivery for your manufacturing in 2022.
FAQ
How production planning differ from production scheduler?
Production planning and scheduling are often mixed. But there is a difference. Planning decides what and how much work must be done, whereas scheduling specifies who and when the work will be done.
What is real-time manufacturing scheduling?
Real-Time Scheduling is a production planning, scheduling, and tracking tool that enables manufacturing organizations to improve customer satisfaction and achieve optimal operational performance cost-effectively.
How can scheduling be improved?
Communication with staff is a great way to improve scheduling. This is true for all businesses, software or otherwise. However, management should not burden employees with ambiguous or unclear communication, and vice versa.
{
"@context": "https://schema.org",
"@type": "FAQPage",
"mainEntity": [{
"@type": "Question",
"name": "How production planning differ from production scheduler?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Production planning and scheduling are often mixed. But there is a difference. Planning decides what and how much work must be done, whereas scheduling specifies who and when the work will be done."
}
},{
"@type": "Question",
"name": "What is real-time manufacturing scheduling?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Real-Time Scheduling is a production planning, scheduling, and tracking tool that enables manufacturing organizations to improve customer satisfaction and achieve optimal operational performance cost-effectively."
}
},{
"@type": "Question",
"name": "How can scheduling be improved?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Communication with staff is a great way to improve scheduling. This is true for all businesses, software or otherwise. However, management should not burden employees with ambiguous or unclear communication, and vice versa."
}
}]
}
Read More
Article | April 16, 2020
China manufacturing has gotten riskier and more difficult. Our China manufacturing lawyers hear this pretty much every single day from our own clients. On the one hand you have rapidly rising harassment of foreigners going on in China. Not a day goes by anymore without a long media story on the growing xenophobia in China. These hatreds/xenophobia bleeds into how foreign buyers are viewed and by Chinese factories and all indicators are that this will worsen.
Read More