How a designer used 3D printing for human gills

KAT PLEWA| August 22, 2018
HOW A DESIGNER USED 3D PRINTING FOR HUMAN GILLS
Have you heard of Biomimicry? It’s a way to get inspiration from nature and find solutions to our problems in it. It’s also especially useful for designers, as nature very often provides them with perfect ideas to resolve design or patterns issues. One of the concepts of Biomimicry is to reproduce animals’ features, for instance, fish gills. In this blog post, you will find one of the most interesting nature-inspired project we could find: 3D printed gills for humans.

Spotlight

Bayer

Bayer is a global enterprise with core competencies in the Life Science fields of health care and agriculture. Its products and services are designed to benefit people and improve their quality of life. At the same time, the Group aims to create value through innovation, growth and high earning power.

OTHER ARTICLES

The Unrelenting Growth of Technology in Manufacturing

Article | May 13, 2021

When the manufacturing industry began to embrace digital technology a decade ago, it adopted a new identity — smart manufacturing or Industry 4.0. Applying cloud, automation, analytics, machine learning and big data to production operations created a connected ecosystem for manufacturing and supply chain management, and became a high-growth market. At the start of 2020, the sector was on track to grow into a market worth more than $300 billion in the coming five years. Then the pandemic hit. By spring, millions of workers had lost their jobs. Some plants closed temporarily or slowed production so workers could spread out to maintain a safe distance from one another. Investment in smart manufacturing fell too, by 16 percent between March and April alone. Some researchers predicted that such a pull-back would dampen investment through 2025. But the conversations we’ve had with C-suite manufacturing executives and service providers suggest investment in smart manufacturing will intensify. By 2025, it could be worth more than $400 billion. It’s no wonder.

Read More

AGV ROI Starts with a Delivery Commitment

Article | January 4, 2022

So much emphasis has been placed on features, advantages, and benefits; too little attention has been paid to delivery dates. The best automation solution on paper means nothing if it cannot be delivered in 2022. Selling the sexy sizzle of new, clever, even remarkable AGVs means nothing if manufacturers and distribution centers cannot take delivery of the product until 2023. Throughout industrial manufacturing and distribution the lead time from many AGV manufacturers is more than a year. That means product ordered in Q1 2022 will not be delivered until the following year. That is an absurd lead time and reflects poor planning and unnecessary supply chain constraints.

Read More

Microfinancing in Uganda Works with Lean Manufacturing Precision

Article | November 23, 2021

Having recently returned from Uganda, had the pleasure of being introduced by Bernard Munyanziza of Nziza Hospitality to Gilbert Atuhire. He is the Managing Director at Value Addition Microfinance Ltd. which provides micro loans to producers and manufacturers. Atuhire is an attorney by training, however his ability to articulate the core values of Lean Six Sigma and continuous process improvement were abundantly clear. The Kampala, Uganda offices are located on Parliamentary Avenue and Dewinton Rise. This central location allows direct access to industrial projects.

Read More

Top Five Industries That Are Leveraging Additive Manufacturing

Article | October 20, 2021

Additive manufacturing has advanced significantly in recent years and is currently used in nearly every area to improve both products and processes in the manufacturing business. As a result, manufacturers have been more imaginative and innovative in offering relevant products to their target customer group due to this technological advancement. Mr. Matt Mong, a prominent business executive, also mentioned in one of his Media7 interviews, As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity. Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca The use of additive technology provides several advantages, including creating unique shapes and low production costs. In addition, the increasing application of additive manufacturing technologies is accelerating the growth of the additive manufacturing market. According to recent research conducted by Metal AM, the value of additively produced components is expected to increase by 15% annually from $12 billion in 2020 to $51 billion in 2030. Thus, additive marketing is the way forward for all industries. This article will cover the top five industries that utilize additive manufacturing and are advancing their businesses every day by overcoming the prevailing challenges such as production errors, downtime, and skilled labor shortage with the benefits of additive manufacturing. Five Industries Utilizing Additive Manufacturing Though additive manufacturing or 3D printing has penetrated almost all the industries, we have picked up a few of the prevailing industries that have started using additive manufacturing and excelling in it. Additive Manufacturing in Aerospace Aerospace has always been the first sector to adopt new technology. Precision is critical in this sector, as a failure of any component is not an option in aerospace. In aircraft production, dimension, weight, and temperature tolerance are critical, and additive technology provides every solution around this. As a result, additive manufacturing has evolved into a critical technology that adds value throughout the supply chain for prominent aircraft firms like Airbus, GE, Boeing, and TTM. Additive Manufacturing in Healthcare Healthcare or medical is one of the industries that is maximizing the benefits of additive manufacturing. Technology enables the medical sector to be more innovative, accurate, and capable of offering the most excellent medical solutions available today. It enables medical practitioners to rehearse before procedures and medical researchers to study functioning human tissues for basic biological research. In addition, it is utilized to fabricate tissues and organoids, surgical instruments, patient-specific surgical models, and bespoke prostheses. Thus, additive technology has altered the face of medicine, elevating it to a more sophisticated and solution-oriented state. Additive Manufacturing in Architecture As with other industries, additive manufacturing reshapes the architectural and construction sectors by eliminating conventional industrial barriers such as production time and cost, material waste, and design constraints. By utilizing 3D printing, designers can now quickly construct and demonstrate how structural parts will function and appear when combined. It also assists designers in seeing how the plan will seem subsequent execution. Additive Manufacturing in Manufacturing Nowadays, additive manufacturing, or 3D printing, is a significant part of the manufacturing process. For example, rather than fabricating a product from solid blocks, additive manufacturing may build a three-dimensional model utilizing fine powder, various metals, polymers, and composite materials as raw materials for constructing a 3D model with a three-dimensional printer. Additive Manufacturing in Education Additive manufacturing is reshaping the educational industry by introducing a new teaching trend and transforming the classroom experience for students. It is being used in various disciplines, including engineering, architecture, medicine, graphic design, geography, history, and even chemistry. They may produce prototypes, three-dimensional models, and historical objects, among other things. Thus, technology enables learners to get more practical information about their respective courses directly on the floor. How has General Electric (GE) been pioneering the use of Additive Manufacturing for 20 years? GE's primary competency is additive manufacturing (3D printing), and the company has made significant investments in the technology. It utilizes additive technology to manufacture a range of components for aviation and other sectors. This article will look at one of their manufacturing case studies and how additive technology enabled them to get the desired result from the end product. CASE STUDY: OPTISYS Optisys modified a vast, multi-part antenna assembly into a palm-sized, lighter, one-piece additive metal antenna. The antenna's aluminum material was chosen because of its surface conductivity, low weight, corrosion resistance, and stress and vibration resistance. Optisys was able to break even on machine acquisition within one year after acquiring its first Direct Metal Laser Melting (DMLM) equipment by utilizing additive technologies. (Source: General Electric) Benefits and Outcomes Non-recurring expenditures were reduced by 75%. Weight loss of 95% The size was reduced by 80%. Part-to-part reduction of 100-to-1 Cycle duration shortened from 11 to 2 months 5 product lines were created for AM, a new market growth Final Words Additive manufacturing benefits a wide variety of businesses. Industries must recognize the advantages of additive manufacturing and begin using the technology in their manufacturing processes to cut production time and costs while increasing product accuracy. This game-changing expansion of the additive manufacturing market across several industries is upgrading both products and production processes. FAQs How do you define additive manufacturing? Additive manufacturing (AM), more generally referred to as 3D printing, is a ground-breaking manufacturing technique that enables the creation of lighter, more robust components and systems. As the name implies, additive manufacturing is adding material to an item to create it. Is additive manufacturing the same as 3D printing? Both terms are interchangeable. Additive manufacturing and 3D printing manufacture components by connecting or adding material from a CAD file. Which companies specialized in additive manufacturing? American Additive Manufacturing, Forecast 3D, Sciaky, Inc., 3 Axis Development, Inc., Jonco Industries, Inc., Polyhistor International, Inc., and Caelynx, LLC are renowned companies for additive manufacturing in the United States of America. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "How do you define additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Additive manufacturing (AM), more generally referred to as 3D printing, is a ground-breaking manufacturing technique that enables the creation of lighter, more robust components and systems. As the name implies, additive manufacturing is adding material to an item to create it." } },{ "@type": "Question", "name": "Is additive manufacturing the same as 3D printing?", "acceptedAnswer": { "@type": "Answer", "text": "Both terms are interchangeable. Additive manufacturing and 3D printing manufacture components by connecting or adding material from a CAD file." } },{ "@type": "Question", "name": "Which companies specialized in additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "American Additive Manufacturing, Forecast 3D, Sciaky, Inc., 3 Axis Development, Inc., Jonco Industries, Inc., Polyhistor International, Inc., and Caelynx, LLC are renowned companies for additive manufacturing in the United States of America." } }] }

Read More

Spotlight

Bayer

Bayer is a global enterprise with core competencies in the Life Science fields of health care and agriculture. Its products and services are designed to benefit people and improve their quality of life. At the same time, the Group aims to create value through innovation, growth and high earning power.

Events