Fleets of Autonomous Mobile Robots

Current market conditions including labor hiring challenges (extremely low unemployment rates and an increasing national minimum wage) are dramatically changing the operating modes of warehouses and distribution centers. Manufacturing and retail are also impacted.
Compounded by increasing same-day customer service demands, especially for                e-fulfillment and omnichannel retail markets, warehouse automation is driving the conversation away from fixed conveyors and traditional AGVs (automated guided vehicles) toward fleets of AMRs (autonomous mobile robots).
Last month, Lidl grocery chain announced it will invest $100 million to build a new distribution center in Covington, GA. This will be the grocer’s fourth regional distribution center in the U.S. The 925,000-square-foot facility will serve as a regional headquarters.
Similarly, FleetPride recently opened a new 150,000-sq.-ft., state-of-the-art distribution center in Elgin, IL, that replaced its existing facility in nearby Bolingbrook. The truck and trailer parts distributor said the Elgin facility will soon be followed by a 256,000-sq.-ft. distribution center currently under construction in Lilburn, GA, near Atlanta. The Lilburn facility is slated to open in mid-2020. The new facility will provide overnight replenishment to more than 45 branches, and it is part of FleetPride’s broader network of regional distribution centers. FleetPride currently keeps more than 60,000 parts in stock.
Fleets of Autonomous Mobile Robots
AMR vs. AGV
AMRs and AGVs move through a facility differently. An AGV usually operates on a fixed and guided route, a “virtual railroad.” Many AGVs do not have the ability to make quick last-minute path changes, whereas AMRs alter routing quickly and easily. Furthermore, delivery sequences become complex as the number of vehicles scale up and down at the facility. If a third vehicle needs to pick up at the first position point on the “virtual railroad,” the first and second robots will have to move out of the way. Lastly, the path often requires fixed infrastructure for the AGV to navigate. This makes it costly and time consuming to change paths when the floor changes.
An AMR is an autonomously navigating robot designed to work collaboratively with humans, particularly in warehouse situations (especially when carrying parcels, totes, boxes, carts or even pallets to pickers and packers). AMRs offer flexible solutions which easy adjust to rapidly changing operational needs.
AMRs: the best fleet solution
Cost justification for AMR fleets occurs by reducing travel time allowing workers to spend more time in zone picking and fulfilling orders. Calculating travel time is quantified when considering the number of SKUs in an operation. The greater the number of SKUs stocked, the more travel time is required to fill an order. Without a minimum number of SKUs, travel time will not be reduced sufficiently to cost-justify the AMR.
Fleets of Autonomous Mobile Robots
Fleets of AMRs should be considered depending on the type of product handled. Load capacity of AMRs prove ideal in reducing walk-time, increasing throughput, and productivity.





Visual Autonomous Mobile Robots with built-in AI
Visual Autonomous Mobile Robots with built-in AI are game-changing navigation and obstacle avoidance breakthroughs. Rather than relying on LiDAR SLAM (Simultaneous Localization And Mapping) like most AMRs in the market, ForwardX’s robots depend on a sensor fusion solution with global award-winning Computer Vision (CV) being the primary source for localization (V-SLAM); obstacle avoidance with LiDAR, Encoder, and IMU data act as secondary feedback to the control loop. 
LiDAR is 2D, so 3D CV technology offers a richer source of data, and a more robust solution far better-suited to ever-changing warehouses and distribution centers. Integration with WMS, MES, and ERP via Robot Computing Systems make visual autonomous robots into game-changing fleets.
ForwardX robots depend on V-SLAM with Deep Learning techniques for positioning and navigation. This allows robots to adapt more readily to changing environments that LiDAR-only based robots cannot handle. The ability to “learn on the fly” allows the big data gathered to predict velocity and direction of obstacles using Deep-Q-Learning and Asynchronous Advantage Actor-Critic techniques. The result is a more intuitive nature in these robots which drive a more collaborative and efficient local path planning.

AI Fleet Manager
The performance of an individual robot is not the only factor to consider when looking at a fleet of 10, 20, or even 100 robots. When automating medium to very large facilities, a robust Fleet Manager acts as the air traffic controller, ensuring maximum efficiency of all robots. The Fleet Manager can be deployed in the cloud or on premises.
Best-in-class Fleet Managers allow the user to determine the picking strategy to maximize efficiency. This calculation includes receiving information automatically from the WMS/MES/ERP and then re-grouping orders to match the picking strategy.

The ForwardX Fleet Manager can regroup the data it receives from any supervisory system and assign it to individual robots automatically to match the picking strategy.
By deploying wearables, such as a smart watch, the people doing the picking can also assign tasks in real-time to those pickers and match them to the robots.
Optimally, a Fleet Manager will have AI native to the solution allowing automated performance improvements. The described Fleet Manager analyzes the paths that are typically taken in a facility and the neural network becomes more intelligent. This means the robots will start to predict what the next delivery solution might look like and be better prepared to accommodate peaks and troughs of delivery requirements.
For the user, this simply means a more efficient delivery system with a lower cost per delivery or more deliveries per hour. The larger the distribution center or warehouse the more these efficiencies multiply.
Large Distribution Centers Ideal for Visual AMRs
Fleets of Autonomous Mobile Robots
A new distribution center is coming to DeKalb and will create approximately roughly 500 jobs. The one-point-six million square foot distribution complex will be located in the center of the Chicago West Business Park, which is south of I-88, near the DeKalb Oasis. The distribution center belongs to Ferrara; the portfolio includes brands such as SweeTARTS, NERDS, Lemonheads, and Now and Laters. Headquartered in Chicago and the projected investment in the facility will exceed $100 million and is expected to open in 2021. Weekly these massive warehouses and distribution centers are announced; AMRs from ForwardX answer the demand.
About The Author
Nic Temple is the Vice President of Sales for the Americas at ForwardX Robotics, a vision based autonomous mobile robot (AMR) and technology company. For 15 years and counting, he develops relationships with customers to address their business’s performance improvement requirements by applying world-class cutting-edge technology. Temple helps guide them through potential pitfalls of being early-adopters to ensure that they are successful and ultimately increase their competitiveness in the market. He holds a BSME from Virginia Tech and an MBA from the Australian Graduate School of Management (AGSM). 

Visit Nic at MODEX 2020, Booth 1207.

SPOTLIGHT

Founded in 2016 by former Oracle SaaS product Head, Nicolas Chee, backed by CDH Investments, Eastern Bell Venture Capital, and Angel Around, ForwardX Robotics is formed by a group of top engineers and scientists who are passionate in invention and creation. The team has developed world’s most cutting-edge robot vision and self-driving technology. Driven by the will of boosting the evolution of AI, and ultimately empowering people to enhance their lives and open up to more possibilities, ForwardX Robotics is pioneering in the future of AI-powered robotics.

OTHER ARTICLES

Examples of Agile Manufacturing to See Why It Is Very Critical

Article | December 8, 2021

An agile manufacturing strategy is one that places a strong priority on responding quickly to the needs of the customer, resulting in a major competitive advantage. It is a captivating method to build a competitive work system in today's fast-moving marketplace. An agile organization must be able to adapt quickly to take advantage of limited opportunities and rapid shifts as per client demand. Agile manufacturing is gaining favor among manufacturers due to its several benefits, including increased work productivity and good control over the final deliverable. Furthermore, the shorter time to market is expanding the global market for enterprise agile transformation services. According to Market Watch, with a CAGR of 17.9% from 2019 to 2026, the US enterprise agile transformation services market is predicted to reach $18,189.32 million by 2026. So why is agile manufacturing gaining traction? What challenges do manufacturers encounter when implementing agile manufacturing, and how have industry leaders like GE, Adobe, and Accenture effectively implemented agile methodology in their organizations and become the best examples of agile manufacturing? In this article, we'll take a closer look at each point. What Is the Importance of Agile Manufacturing? The term "agile manufacturing" refers to the use of a variety of different technologies and methodologies in the production process. In order to meet market standards and criteria, organizations must be able to adapt quickly and effectively to their customers' needs by bringing agility to manufacturing. To ensure the quality of products and the cost of production are kept to a minimum, agile manufacturing helps firms to regulate their end product. Because it immediately addresses the needs and worries of the clients, it is an effective strategy as well. By using this method, firms may better understand the market and use it to their advantage by creating products that meet the needs of their customers. Challenges While Adopting Agile Methodologies on a Project When we talk about agile challenges when implementing it on any project, some will be routine and some will be unique. So, let's get a quick grasp on the agile challenges. Communication about the project: Clear communication between the development team and the product owner is critical throughout the project development life cycle. Any miscommunication can have an impact on the product's quality and the end result of the entire process. Managing the day-to-day operational challenges: Throughout the project, daily minor or large operations play a significant impact on the overall project output. Any obstacles encountered when working on everyday chores should be resolved immediately to avoid any delays or halts in the process. To make it function, you'll need experience: Any inexperienced product owners, scrum masters, or individuals new to the agile approach may have a negative impact on the project's expected output. Various project contributors' buy-in: Inadequate training, a lack of motivation to show up from project participants, keeping customers in the loop, and a lack of departmental management are some of the problems that may hinder the accurate implementation of the agile methodology. The presence of one or more of these obstacles in any business or project may jeopardize the agile methodology and its total output. Though there are many online training courses and books available on how to integrate agile practices into your project, each organization's scenario is unique, as are the challenges they encounter. As a result, handling the situation with experienced personnel that have a can-do attitude is what is required to make it work. Following that, we'll look at some manufacturing business agile examples and how they've successfully implemented agile methodology in their organizations. Agile Manufacturing Examples We'll look at one of the most well-known industrial examples of agile manufacturing that has successfully implemented the methodology and achieved great outcomes. Take a peek at it. Adobe One of the most popular agile manufacturing examples in performance management revamps is Adobe. When Donna Morris was Senior Vice President of People Resources in 2012, she thought the annual performance evaluation and the stack-ranking process were bureaucratic, paperwork-heavy overly complicated, taking up too many management hours for the company. Aside from this, she discovered that it set barriers to joint efforts, creativity, and development. The Adobe team ditched annual performance reviews and encouraged managers and employees to regularly discuss performance via a system called “Check-in.” Adobe has reduced voluntary turnover by 30% and increased voluntary departures by 50% since making the transition. Moreover, the company saved 80,000 management hours annually. General Electric General Electric famously overhauled its performance management system in 2015, paving the path for other global firms to follow in the electronics industry. Annual performance evaluations and the infamous rank-and-yank performance rating system (ranking employees and regularly eliminating the bottom 10%) had GE decide they needed to update their performance management system. The annual appraisals lasted a decade longer than the ranking system. They are now a more agile organization. Instead of directing employees to attain goals, managers now guide and coach them. GE also decided to deploy an app they designed called PD@GE to facilitate regular employee feedback and productive performance discussions. Using the app, each employee establishes priorities and solicits feedback. They can also give real-time feedback. Employees can request a face-to-face meeting at any time to discuss transparency, honesty, and continuous improvement. These traits will not arise quickly and will require motivation and commitment for self-growth. Accenture According to Accenture's previous system, employees who perform well tend to be the most narcissists and self-promoters. Accenture wanted to revamp their system and reward genuine employees. So they started using on-going performance conversations while focusing on performance development. Because it required employees to compete with coworkers who may have had a different position, Accenture decided that forced ranking was illogical. The new system is more centered on the employee and aims to assist them in becoming the best version of themselves. Final Words Agile manufacturing is a way to get the finest results and exceed client expectations on every project. Businesses are benefiting from agile manufacturing because it improves the end product and helps them better utilize their resources. The necessity of agile manufacturing in business is vital, and organizations must overcome the challenges they encounter while applying the agile approach to any of their projects in order to reap the benefits of agile production. FAQ How does agile manufacturing help businesses? An agile manufacturing process enables organizations to respond to client requests with flexibility when market conditions change, as well as regulate their intended production while preserving product quality and minimizing costs. What is an agile organization? Unified alignment, accountability, specialization, transparency, and cooperation are key elements in an agile organization. To guarantee these teams can work efficiently, the organization must maintain a solid environment. What are the core elements of agility? Individuals and interactions over processes and tools are the four values of the Agile Methodology. A working program is preferable to in-depth documentation. During contract negotiation, the customer's cooperation is valued. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "How does agile manufacturing help businesses?", "acceptedAnswer": { "@type": "Answer", "text": "An agile manufacturing process enables organizations to respond to client requests with flexibility when market conditions change, as well as regulate their intended production while preserving product quality and minimizing costs." } },{ "@type": "Question", "name": "What is an agile organization?", "acceptedAnswer": { "@type": "Answer", "text": "Unified alignment, accountability, specialization, transparency, and cooperation are key elements in an agile organization. To guarantee these teams can work efficiently, the organization must maintain a solid environment." } },{ "@type": "Question", "name": "What are the core elements of agility?", "acceptedAnswer": { "@type": "Answer", "text": "Individuals and interactions over processes and tools are the four values of the Agile Methodology. A working program is preferable to in-depth documentation. During contract negotiation, the customer's cooperation is valued." } }] }

Read More

Why Manufacturing Companies Must Consider Business Intelligence

Article | December 14, 2021

Do manufacturing businesses require Business Intelligence (BI)? The answer is YES. Manufacturing is one of the most data-intensive businesses, producing massive amounts of data ranging from supply chain management to shop floor scheduling, accounting to shipping and delivery, and more. All of this information would go to waste if not properly categorized and utilized. Scrutinizing and analyzing your data with business intelligence will help you become a more efficientand productive organization. Your organized data can show you where the gaps or inefficiencies are in your manufacturing process and help you fix it. Many companies simply are not willing to change or think they are done once they make a change. But the truth is technology, consumer demands, the way we work, human needs and much more are constantly changing. Michael Walton, Director, Industry Executive at Microsoft BI has the potential to improve the operations of an organization and transform it into an organized one. According to Finances Online research, more than 46% of organizations are already employing a BI tool as a significant part of their company strategy, and according to Dresner Advisory Services research, 8 in 10 manufacturers who use BI for analytics have seen it function successfully. How Manufacturing Operations Are Improving with Business Intelligence? As revealed by the BI statistics above, we can see that business intelligence is critical in manufacturing. To further illustrate how business intelligence supports the manufacturing industry, let's look at some of the business intelligence benefits that are making a difference in the manufacturing industry. Advances Operational Efficacy While modern enterprises create massive amounts of data, not all of this data is relevant. Today's business intelligence solutions take all of the data from your organization and transform it into an easily comprehensible and actionable format. It enables you to minimize or fix errors in real-time. Additionally, it helps you to forecast raw material demand and assess procedures along the supply chain to ensure maximum efficiency. Allows for the Analysis and Monitoring of Financial Operations Business intelligence solutions provide insight into sales, profit, and loss, raw material utilization and can usually assist you in optimizing resources to increase your return on investment. Understanding your cost-benefit analysis, BI enables you to manage production costs, monitor processes, and improve value chain management. Assists in the Management of Your Supply Chain Manufacturing companies engage with various carriers, handling these multiple processes can be complicated. BI enables manufacturing companies to have more accurate control over shipments, costs, and carrier performance by providing visibility into deliveries, freight expenditures, and general supplies. Contributes to the Reduction of Inventory Expenses and Errors Overstocks and out-of-stocks are substantial barriers to profitability. Business intelligence can assist you in tracking records over time and location while identifying issues such as product faults, inventory turnover, and margins for particular distributors. Determines the Efficiency of Equipment Several factors can cause inefficient production. For example, errors with equipment due to improper installation, maintenance, or frequent downtime can reduce production. So, to keep industrial operations running well, one must monitor these factors. Manufacturers can maintain their machines' health using data analytics and business intelligence. It provides real-time information about your production lines' status and streamlines production procedures. How Business Intelligence Helped SKF (SvenskaKullagerfabriken) to Efficiently Plan Their Future Manufacturing SKF is a key supplier of bearings, seals, mechatronics, and lubrication systems globally. The company posses its headquarter in Sweden and has distributors in over 130 countries. Due to SKF's extensive worldwide reach and product diversity, they constantly need to forecast market size and demand for their products to modify their future manufacturing. Generally, SKF experts developed and kept their forecasts in traditional and intricate excel files. However, the efforts of maintaining and reconciling disparate studies were excessively high. As a result, SKF used require days to generate a simple demand prediction. Later, SKF integrated its business data assets into a single system by utilizing business intelligence in production. Following that, they could swiftly begin sharing their data and insights across multiple divisions within their firm. They are now able to aggregate demand estimation fast and does not face cross-departmental issues about data integrity for the vast number of product varieties they manufacture. This intelligent data management enabled SKF to plan their future production operations efficiently. Final Words Business intelligence in manufacturing makes a big difference in the organization's entire operations. Given the benefits of business intelligence in manufacturing, a growing number of manufacturers are implementing it in their operations. According to Mordor Intelligence, Business Intelligence (BI) Market was worth USD 20.516 billion in 2020 and is anticipated to reach USD 40.50 billion by 2026, growing at a 12% compound annual growth rate throughout the forecast period (2021-2026). Hence, we may say that the business intelligence is crucial for manufacturing and is booming, thanks to its enormous potential and the numerous benefits it provides to various businesses. FAQ Why is business intelligence so important in manufacturing? Organization intelligence may assist businesses in making better decisions by presenting current and past data within the context of their business. Analysts can use business intelligence to give performance and competitive benchmarking data to help the firm run more smoothly and efficiently. What value does BI add to manufacturing? Business intelligence solutions provide insight into sales, profit, and loss, raw material utilization and can usually assist you in optimizing resources to increase your return on investment. Understanding your cost-benefit analysis enables you to manage production costs, monitor processes, and improve value chain management. What is business intelligence's key objective? Business intelligence is helpful to assist corporate leaders, business managers, and other operational employees in making more informed business

Read More

The Top Five Lean Manufacturing Tools for 2022

Article | December 13, 2021

Lean manufacturing is a growing trend that aims to reduce waste while increasing productivity in manufacturing systems. But, unfortunately, waste doesn't add value to the product, and buyers don't want to pay for it. This unusual method pushed Toyota Motor Corporation's industry to become a leading Toyota Production System (TPS). As a result, they are now efficiently producing some of the world's top cars with the least waste and the quickest turnaround. The majority of manufacturers are now using lean management. According to the 2010 Compensation Data Manufacturing report, 69.7% of manufacturing businesses use Lean Manufacturing Practices. Lean tools are the ones that help you in implementing lean practice in your organization. These lean tools assist in managing people and change while solving problems and monitoring performance. Lean Manufacturing technologies are designed to reduce waste, improve flow, improve quality control, and maximize manufacturing resources. What Are the Five Best Lean Manufacturing Tools and How Do They Work? There are roughly 50 Lean Manufacturing tools available in the market. This post will describe 5 of them and their value to your business and its developments. 5S The 5S system promotes efficiency by organizing and cleaning the workplace. To help increase workplace productivity, the system has five basic guidelines (five S's). The five Ss are Sort, Set, Shine, Standardize, and Sustain. 5S improves workplace efficiency and effectiveness by: Sort: Removing unnecessary material from each work area Set: Set the goal of creating efficient work areas for each individual Shine: Maintaining a clean work area after each shift helps identify and resolve minor concerns Standardize: Documenting changes to make other work areas' applications more accessible Sustain: Repeat each stage for continuous improvement 5S is a lean tool used in manufacturing, software, and healthcare. Kaizen and Kanban can be utilized to produce the most efficient workplace possible. Just-In-Time (JIT) manufacturing Just-in-time manufacturing allows manufacturers to produce products only after a customer requests them. This reduces the risk of overstocking or damaging components or products during storage. Consider JIT if your company can operate on-demand and limit the risk of only carrying inventory as needed. JIT can help manage inventory, but it can also hinder meeting customer demand if the supply chain breaks. Kaizen With Kaizen, you may enhance seven separate areas at once: business culture, leadership, procedures, quality, and safety. Kaizen is a Japanese word, means "improvement for the better" or "constant improvement." “Many companies are not willing to change or think they are done once they make a change. But the truth is technology; consumer demands, the way we work, human needs and much more are constantly changing.” – Michael Walton, Director, Industry Executive at Microsoft The idea behind Kaizen is that everyone in the organization can contribute suggestions for process improvement. Accepting everyone's viewpoints may not result in significant organizational changes, but minor improvements here and there will add up over time to substantial reductions in wasted resources. Kanban Kanban is a visual production method that delivers parts to the production line as needed. This lean tool works by ensuring workers get what they need when they need it. Previously, employees used Kanban cards to request new components, and new parts were not provided until the card asked them to. In recent years, sophisticated software has replaced Kanban cards to signal demand electronically. Using scanned barcodes to signify when new components are needed, the system may automatically request new parts. Kanban allows businesses to manage inventory better, decrease unnecessary stock, and focus on the products that must be stored. To reduce waste and improve efficiency, facilities can react to current needs rather than predict the future. Kanban encourages teams and individuals to improve Kanban solutions and overall production processes like Kaizen. Kanban as a lean tool can be used with Kaizen and 5S. PDCA (Plan, Do, Check, Act) Plan-Do-Check-Act (PDCA) is a scientific strategy for managing change. Dr. W. Edwards Deming invented it in the 1950s; hence, it is called the ‘Deming Cycle.’ The PDCA cycle has four steps: Problem or Opportunity: Determine whether a problem or an opportunity exists Do: Make a small test Examine: Look over the test results Act: Take action depending on results How Nestlé Used the Kaizen Lean Manufacturing Tool Nestlé is the largest food corporation in the world, yet it is also a company that practices Lean principles, particularly the Kaizen method. Nestlé Waters used a technique known as value stream mapping, which is frequently associated with Kaizen. They designed a new bottling factory from scratch to guarantee that operations were as efficient as possible. Nestlé has been aiming to make ongoing changes to their processes to reduce waste and the amount of time and materials that can be wasted during their operations. Final Words Lean manufacturing techniques enable many businesses to solve their manufacturing difficulties and become more productive and customer-centric. In addition, useful lean manufacturing tools assist companies in obtaining the anticipated outcomes and arranging their operations in many excellent ways to meet buyer expectations. Hence, gather a list of the top lean manufacturing tools and choose the best fit for your organization to maximize your ROI and address the performance issue that is causing your outcomes to lag. FAQ What are the standard tools in lean manufacturing? Among the more than 50 lean manufacturing tools, Kaizen, 5S, Kanban, Value Stream Mapping, and PDCA are the most commonly used lean manufacturing tools. How to Select the Best Lean Manufacturing Tools for Your Business? Choosing a lean manufacturing tool begins with identifying the issue or lag in your organization that affects overall productivity and work quality. To select the lean device that best meets your company's needs, you must first grasp each one's benefits and implementation techniques. What is included in a Lean 5S toolkit? The lean 5S toolbox contains some essential items for achieving the goal. It comes with a notepad or tablet, a camera, a high-quality flashlight, a tape measure, and a stopwatch. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What are the standard tools in lean manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Among the more than 50 lean manufacturing tools, Kaizen, 5S, Kanban, Value Stream Mapping, and PDCA are the most commonly used lean manufacturing tools." } },{ "@type": "Question", "name": "How to Select the Best Lean Manufacturing Tools for Your Business?", "acceptedAnswer": { "@type": "Answer", "text": "Choosing a lean manufacturing tool begins with identifying the issue or lag in your organization that affects overall productivity and work quality. To select the lean device that best meets your company's needs, you must first grasp each one's benefits and implementation techniques." } },{ "@type": "Question", "name": "What is included in a Lean 5S toolkit?", "acceptedAnswer": { "@type": "Answer", "text": "The lean 5S toolbox contains some essential items for achieving the goal. It comes with a notepad or tablet, a camera, a high-quality flashlight, a tape measure, and a stopwatch." } }] }

Read More

Corporate Citizenship and Industrial Investment in Uganda: Key to Accessing Significant Affordable Workforce

Article | June 28, 2021

Manufacturing journalist Thomas R. Cutler visited the remarkable and magnificent country of Uganda. Foreign investment is coming into the country and that is a good thing; it is not however, enough. To tap into this workforce corporate citizenship and contribution is essential. Just as I underestimated the stamina needed to climb the mountain to experience the gorillas, the role of transforming Uganda requires a careful, well-thought approach.

Read More

SPOTLIGHT

Founded in 2016 by former Oracle SaaS product Head, Nicolas Chee, backed by CDH Investments, Eastern Bell Venture Capital, and Angel Around, ForwardX Robotics is formed by a group of top engineers and scientists who are passionate in invention and creation. The team has developed world’s most cutting-edge robot vision and self-driving technology. Driven by the will of boosting the evolution of AI, and ultimately empowering people to enhance their lives and open up to more possibilities, ForwardX Robotics is pioneering in the future of AI-powered robotics.

Events