Fit for Industry 4.0?

VINCENT KAINA| January 09, 2020
FIT FOR INDUSTRY 4.0?
Additive manufacturing holds great potential for production scenarios in the sense of Industry 4.0. This applies not only to economic parameters, but also to constructive factors, since the layer structure in the x-, y-and z- directions enables the production of geometries that are impossible to produce with conventional processes.

Spotlight

CRP Group

Each reality is an example of excellence in its target sector. Experience of more than 45 years in the world of F1 alongside the major international teams, the CRP group is distinguished by its know-how in specific application fields, the additive manufacturing, the high precision CNC machining, development of two-wheel racing vehicle both electric and internal combustion and the creation of services focused on customer care.

OTHER ARTICLES

Computer Aided Manufacturing (CAM): Major Challenges and Their Solutions

Article | December 16, 2021

Computer-aided manufacturing (CAM) is a technology that revolutionized the manufacturing business. Pierre Bézier, a Renault engineer, produced the world's first real 3D CAD/CAM application, UNISURF CAD. His game-changing program redefined the product design process and profoundly altered the design and manufacturing industries. So, what is CAM in its most basic definition? Computer-aided manufacturing (CAM) is the application of computer systems to the planning, control, and administration of manufacturing operations. This is accomplished by using either direct or indirect links between the computer and the manufacturing processes. In a nutshell, CAM provides greater manufacturing efficiency, accuracy, and consistency. As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity.” – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca In light of the numerous advantages and uses of computer-aided manufacturing, manufacturers have opted to use it extensively. The future of computer-aided manufacturing is brightening due to the rapid and rising adoption of CAM. According to Allied Market Research, the global computer-aided manufacturing market was worth $2,689 million in 2020 and is expected to reach $5,477 million by 2028, rising at an 8.4% compound annual growth rate between 2021 and 2028. Despite all this, each new development has benefits and challenges of its own. In this article, we'll discuss the benefits of CAM, the challenges that come with it, and how to deal with them. Let's start with the advantages of computer-aided manufacturing. Benefits of Computer Aided Manufacturing (CAM) There are significant benefits of using computer-aided manufacturing (CAM). CAM typically provides the following benefits: Increased component production speed Maximizes the utilization of a wide variety of manufacturing equipment Allows for the rapid and waste-free creation of prototypes Assists in optimizing NC programs for maximum productivity during machining Creates performance reports automatically As part of the manufacturing process, it integrates multiple systems and procedures. The advancement of CAD and CAM software provides visual representation and integration of modeling and testing applications. Greater precision and consistency, with similar components and products Less downtime due to computer-controlled devices High superiority in following intricate patterns like circuit board tracks Three Challenges in CAM and Their Solutions We have focused on the three primary challenges and their solutions that we have observed. Receiving Incomplete CAD Updates Receiving insufficient CAD updates is one of the challenges. If, for example, the part update from a CAD engineer does not include the pockets that are required in the assembly, to the CAM engineer. SOLUTION: A modeler that enables developers of a CAM programs to create intuitive processes for features such as feature extraction and duplication across CAD version updates. A modeler is capable of recognizing and extracting the pocket's architecture and the parameters that define it. Additionally, the CAM application can enable the engineer to reproduce the pocket in a few simple steps by exploiting the modeler's editing features such as scaling, filling, extruding, symmetrical patterning, and removing. Last Minute Design Updates The second major challenge is last-minute design changes may impact manufacturers as a result of simulation. SOLUTION: With 3D software components, you may create applications in which many simulation engineers can work together to make design modifications to the CAD at the same time, with the changes being automatically merged at the end. Challenging Human-driven CAM Manufacturing The third major challenge we have included is that CAM engineers must perform manual steps in human-driven CAM programming, which takes time and requires expert CAM software developers. Furthermore, when the structure of the target components grows more complicated, the associated costs and possibility of human failure rise. SOLUTION: Self-driving CAM is the best solution for this challenge. Machine-driven CAM programming, also known as self-driving CAM, provides an opportunity to improve this approach with a more automated solution. Preparing for CAM is simple with the self-driving CAM approach, and it can be done by untrained operators regardless of part complexity. The technology handles all of the necessary decisions for CAM programming operations automatically. In conclusion, self-driving CAM allows for efficient fabrication of bespoke parts, which can provide substantial value and potential for job shops and machine tool builders. Computer Aided Manufacturing Examples CAM is widely utilized in various sectors and has emerged as a dominant technology in the manufacturing and design industries. Here are two examples of sectors where CAM is employed efficiently and drives solutions to many challenges in the specific business. Textiles Virtual 3D prototype systems, such as Modaris 3D fit and Marvellous Designer, are already used by designers and manufacturers to visualize 2D blueprints into 3D virtual prototyping. Many other programs, such as Accumark V-stitcher and Optitex 3D runway, show the user a 3D simulation to show how a garment fits and how the cloth drapes to educate the customer better. Aerospace and Astronomy The James Webb Space Telescope's 18 hexagonal beryllium segments require the utmost level of precision, and CAM is providing it. Its primary mirror is 1.3 meters wide and 250 kilograms heavy, but machining and etching will reduce the weight by 92% to just 21 kilograms. FAQ What is the best software for CAM? Mastercam has been the most extensively utilized CAM software for 26 years in a row, according to CIMdata, an independent NC research business. How CAD-CAM helps manufacturers? Customers can send CAD files to manufacturers via CAD-CAM software. They can then build up the machining tool path and run simulations to calculate the machining cycle times. What is the difference between CAD and CAM? Computer-aided design (CAD) is the process of developing a design (drafting). CAM is the use of computers and software to guide machines to build something, usually a mass-produced part.

Read More

Wireless AGVs May Prove Most Important ProMatDX Innovation

Article | April 1, 2021

April 12 -15 ProMatDX, the largest material handling event, will take place virtually. It will feature dozens of AGV vendors. Sadly, some of these highly innovating products still need to be plugged-in to capture power. No more. Wiferion in process charging eliminates the plug-in charging making AGVs truly autonomous. In process charging eliminates the waste of AGV downtime – the fleet is always working AND charging. In process charging is safe ensuring the OSHA, ergonomics, and danger to workers significantly reduced. In process charging is cost-efficient because full vehicle deployment means a reduced fleet count ensuring a rapid ROI. For OEMs of AGVs and industrial trucks implementing inductive charging technology solves the wear and tear issues caused by conventional charging methods as well as making vehicles fully autonomous. For end-users of AGVs and industrial trucks, inductive charging in combination with lithium batteries can improve fleet availability by more than 30%. Whether driverless transport systems (AGVs), electric forklifts, or mobile robots (AMRs), the efficient use of industrial trucks is a decisive factor for competitiveness during ever- increasing cost pressures. The energy systems are being scrutinized and lithium-ion batteries are the preferred technology. The advantages versus lead-acid batteries (including the ability to recharge faster and more often) are obvious. Until now the full potential of storage technology has not been fully realized.

Read More

3 Sales-Driving Manufacturing Marketing Strategies

Article | December 28, 2021

Successful manufacturing marketing strategies are all you need to grow your business and make it visible in every way to your target customer group. Many manufacturers are now becoming vigilant towards B2B marketing and have started forming an individual marketing budget in their annual budgets. “We should quantify marketing to inform what we do – not to decide what we do.” – Rory Sutherland, Vice-Chairman, Ogily As per Statista, nearly half of B2B organizations said they’re planning to boost their content budget in the next year. As a result, B2B marketing for manufacturers must be redesigned and smartly strategized in order to be more effective and fruitful. This article will focus on the significant challenges manufacturers face in B2B marketing and how manufacturers use the three most sales-driven manufacturing marketing strategies. 4 Biggest Marketing Challenges in B2B & Manufacturing Develop Tailored Experiences You have a few seconds to capture the customer's interest. When done correctly, personalization may help. With persistent multi-channel marketing, you may strengthen your brand in target areas. Additionally, an account-based marketing approach enables you to focus on important clients while generating customized content for them. Integrate agile methods to test novel ideas across your business without demanding extensive approval. Further, crowdsourced content, B2B communities, and advocate marketing should be prioritized. Convert Leads into Sales With the right strategy, you may generate more high-quality leads. Relate marketing expenditures to sales and demonstrate the impact of marketing on the bottom line. Align marketing and sales by focusing on the customer's purchasing journey. Increase the quality of your leads, transparency, and collaboration with your partners. Measure Marketing Performance Marketers will be asked to demonstrate ROI and forecast future actions. Proactively calculate the MROI (Marketing Return on Investment) on marketing and sales investments. Determine how to get the most out of your marketing budget by doing more with less. Focus on making data-driven judgments rather than relying on guesswork. Maximize the Marketing Tech Investment As a manufacturer, you have access to a number of tools and resources. You will need to collaborate with your technical team to integrate it. Collaborate with your IT team to effectively adapt, innovate, and apply technology. By integrating current technologies, you can automate and improve marketing campaigns more efficiently. “Marketing professionals have to act as conveners and connect the dots so that there is alignment between stakeholders like sales and operation teams and executive leadership on what products and services will drive growth in any given quarter." – Maliha Aqeel, Director of Global Communication, Fix Network World in conversation with Media7 3 Best B2B Marketing Strategies for Manufacturers That Drive Sales Consider Purchasing an E-commerce Platform Consumer behavior is driving manufacturing transformation, particularly the shift to digital channels. Manufacturers who still handle consumers solely by phone, fax, or email risk losing their loyalty as their worlds and tastes grow increasingly digital. Manufacturers have clearly acknowledged the digital transition in 2021. This year's Manufacturing & E-Commerce Benchmark Report says 98% of manufacturers have, or plan to have, an e-commerce strategy. Moreover, 42% of manufacturers who engaged in e-commerce and digital said it strengthened client connections. How does e-commerce benefit manufacturers? Distributes a customized catalog to your customers Ascertains those spare components are visible It allows customers to customize items online Sells your whole range online Increases your consumer base Focus on the User Experience and Interface (UX/UI) The term "User Experience" refers to all elements of an end user's engagement with a business, its goods, and services. The purpose of user experience is to establish a connection between company objectives and user demands. An engaging user interface or user experience keeps users engaged and consumers pleased. Additionally, it enhances the rate of return on investment (ROI). That is why it is necessary to maintain great UI/UX quality. How does UX/UI benefit manufacturers? Increases the number of conversions Support is less expensive It helps with SEO Brand loyalty is increased Embrace an Omni-channel Strategy Millennials represent 73% of those making buying decisions for companies. Part of this means offering a seamless, consistent shopping experience across a variety of channels. With the right CRM solution, you'll eliminate a lot of the legwork associated with targeting specific buyers. Manufacturers can leverage omni-channel to increase availability, promote sales and traffic, and connect digital touchpoints. How does Omni-channel benefit manufacturers? Supports marketers in developing trust Enhances the user experience with the brand It clarifies a complex subject Final Words Developing a successful manufacturing marketing plan is all that is required to set your organization apart from the competition. Consider thinking outside of the box and developing innovative manufacturing marketing strategies that will surprise your targeted customers and keep you on their minds at all times. B2B marketing for manufacturers has long been a priority, since manufacturers frequently overlook this aspect of their business when they should. Utilize the above-mentioned sales-driven manufacturing marketing methods to assist your organization in growing and reaching the maximum range of target prospects. FAQ What is the goal of business-to-business marketing? B2B marketing's goal is to familiarize other businesses with your brand name and the value of your product or service in order to convert them into clients. How can manufacturers energize their market presence? Manufacturers may boost their market presence by advertising on various social media platforms, opting for native language ads, and partnering with influencers to promote their products or services.

Read More

Why Manufacturing Companies Must Consider Business Intelligence

Article | December 14, 2021

Do manufacturing businesses require Business Intelligence (BI)? The answer is YES. Manufacturing is one of the most data-intensive businesses, producing massive amounts of data ranging from supply chain management to shop floor scheduling, accounting to shipping and delivery, and more. All of this information would go to waste if not properly categorized and utilized. Scrutinizing and analyzing your data with business intelligence will help you become a more efficientand productive organization. Your organized data can show you where the gaps or inefficiencies are in your manufacturing process and help you fix it. Many companies simply are not willing to change or think they are done once they make a change. But the truth is technology, consumer demands, the way we work, human needs and much more are constantly changing. Michael Walton, Director, Industry Executive at Microsoft BI has the potential to improve the operations of an organization and transform it into an organized one. According to Finances Online research, more than 46% of organizations are already employing a BI tool as a significant part of their company strategy, and according to Dresner Advisory Services research, 8 in 10 manufacturers who use BI for analytics have seen it function successfully. How Manufacturing Operations Are Improving with Business Intelligence? As revealed by the BI statistics above, we can see that business intelligence is critical in manufacturing. To further illustrate how business intelligence supports the manufacturing industry, let's look at some of the business intelligence benefits that are making a difference in the manufacturing industry. Advances Operational Efficacy While modern enterprises create massive amounts of data, not all of this data is relevant. Today's business intelligence solutions take all of the data from your organization and transform it into an easily comprehensible and actionable format. It enables you to minimize or fix errors in real-time. Additionally, it helps you to forecast raw material demand and assess procedures along the supply chain to ensure maximum efficiency. Allows for the Analysis and Monitoring of Financial Operations Business intelligence solutions provide insight into sales, profit, and loss, raw material utilization and can usually assist you in optimizing resources to increase your return on investment. Understanding your cost-benefit analysis, BI enables you to manage production costs, monitor processes, and improve value chain management. Assists in the Management of Your Supply Chain Manufacturing companies engage with various carriers, handling these multiple processes can be complicated. BI enables manufacturing companies to have more accurate control over shipments, costs, and carrier performance by providing visibility into deliveries, freight expenditures, and general supplies. Contributes to the Reduction of Inventory Expenses and Errors Overstocks and out-of-stocks are substantial barriers to profitability. Business intelligence can assist you in tracking records over time and location while identifying issues such as product faults, inventory turnover, and margins for particular distributors. Determines the Efficiency of Equipment Several factors can cause inefficient production. For example, errors with equipment due to improper installation, maintenance, or frequent downtime can reduce production. So, to keep industrial operations running well, one must monitor these factors. Manufacturers can maintain their machines' health using data analytics and business intelligence. It provides real-time information about your production lines' status and streamlines production procedures. How Business Intelligence Helped SKF (SvenskaKullagerfabriken) to Efficiently Plan Their Future Manufacturing SKF is a key supplier of bearings, seals, mechatronics, and lubrication systems globally. The company posses its headquarter in Sweden and has distributors in over 130 countries. Due to SKF's extensive worldwide reach and product diversity, they constantly need to forecast market size and demand for their products to modify their future manufacturing. Generally, SKF experts developed and kept their forecasts in traditional and intricate excel files. However, the efforts of maintaining and reconciling disparate studies were excessively high. As a result, SKF used require days to generate a simple demand prediction. Later, SKF integrated its business data assets into a single system by utilizing business intelligence in production. Following that, they could swiftly begin sharing their data and insights across multiple divisions within their firm. They are now able to aggregate demand estimation fast and does not face cross-departmental issues about data integrity for the vast number of product varieties they manufacture. This intelligent data management enabled SKF to plan their future production operations efficiently. Final Words Business intelligence in manufacturing makes a big difference in the organization's entire operations. Given the benefits of business intelligence in manufacturing, a growing number of manufacturers are implementing it in their operations. According to Mordor Intelligence, Business Intelligence (BI) Market was worth USD 20.516 billion in 2020 and is anticipated to reach USD 40.50 billion by 2026, growing at a 12% compound annual growth rate throughout the forecast period (2021-2026). Hence, we may say that the business intelligence is crucial for manufacturing and is booming, thanks to its enormous potential and the numerous benefits it provides to various businesses. FAQ Why is business intelligence so important in manufacturing? Organization intelligence may assist businesses in making better decisions by presenting current and past data within the context of their business. Analysts can use business intelligence to give performance and competitive benchmarking data to help the firm run more smoothly and efficiently. What value does BI add to manufacturing? Business intelligence solutions provide insight into sales, profit, and loss, raw material utilization and can usually assist you in optimizing resources to increase your return on investment. Understanding your cost-benefit analysis enables you to manage production costs, monitor processes, and improve value chain management. What is business intelligence's key objective? Business intelligence is helpful to assist corporate leaders, business managers, and other operational employees in making more informed business

Read More

Spotlight

CRP Group

Each reality is an example of excellence in its target sector. Experience of more than 45 years in the world of F1 alongside the major international teams, the CRP group is distinguished by its know-how in specific application fields, the additive manufacturing, the high precision CNC machining, development of two-wheel racing vehicle both electric and internal combustion and the creation of services focused on customer care.

Events