Factors Explaining Why American Manufacturing Is Growing

FACTORS EXPLAINING WHY
Even though Silicon Valley has built its reputation on innovation, it is believed that it has lost its edge. Business entrepreneurs were encouraged to focus on gleaming venture capitalists, to sell bigger dreams to the most popular technology. The future of the American manufacturing industry is predicted to have more growth than the past two decades, and here are the reasons why:


Excluding the Middleman:

From ancient times, manufacturers sold through retailers who acted as middlemen in the distribution process, but with the upgradation of the industry, manufacturers can now directly connect to the consumers and the government.


Rising Demand for US Made Products:

The US population leans more towards products that are made in America. Hence, the manufacturers make extra efforts to produce high quality premium products for their customers.


Customer Loyalty and Support:

Customers love to connect with the brand and understand the brand’s struggle to manufacture and create excellent products. Engaging customers in the journey will help manufacturers gain insights and feedback, and improvise accordingly. People today are more keen towards seeing improvements sooner, and it has become much easier to hear from customers, iterate, fail, pivot, and improve quickly.


Conscientious Capitalism’s Rise:

When you take into account the carbon cost of transportation imports, there is another clear advantage to the growth of domestic production. Important financial advisors are also raising this alarm. For instance, the polypropylene required for the majority of PPE is manufactured in the U.S., transported to China, used to make masks, and then returned. Additionally, since at least 18% of air pollution is caused by ocean freight, domestic product manufacturing may benefit both the environment and consumer demand.


Energy Costs:

The cost of energy consumption in the United States is declining, which is crucial when competing with foreign companies. For the first time in modern history, domestic production has a strategic advantage because electricity is the second-highest cost after labor.


Automation:

The strategic advantage of cheap labour possessed by international competitors is eliminated by the growth of automation. Over the next ten years, robotic automation is expected to challenge enterprises that have relied on cheap labour as a competitive advantage, paving the way for a revival of American manufacturing.

Spotlight

Kyowa Rubber Co.,ltd

Since our company was established in 1971, we have been engaging mainly in producing and selling industrial rubber products and also selling industrial machines spare parts. Under the rapid social situation changes, we have been working very hard every day to achieve our motto: for better quality with better technology.

OTHER ARTICLES
Manufacturing Technology

Cost Optimization in Manufacturing with Digital twin

Article | May 5, 2022

Digital twins appear to be beneficial in cutting expenses for many industries. A growing number of companies in the manufacturing industry, as well as healthcare, oil & gas, and other industries, are using digital twin features to better understand and respond to changing business conditions. Digital twins can be used to save costs at numerous levels or segments of your business. Their use raises awareness of situations and helps businesses make better decisions. This technology has been applied to: Change to standard care and conditional support in the railways Use predictive care to foresee major impacts on the oil and gas industry Monitor patients in real-time to improve comfort and avoid life-threatening scenarios So, how do digital twin solutions assist manufacturers in cutting production costs? Digital twins enable manufacturers to detect early mechanical defects, allowing for faster or cheaper repairs. Companies can save money by adapting to changing circumstances. For example, a corporation may automatically plan repairs to minimize performance impact. Many companies use digital twins to cut expenses in various operating scenarios. In this article, we will look at situations to help recognize the benefits of digital twins. Why Use a Digital twin? Better R&D The adoption of digital twins provides more effective product research and design. It also generates large amount of data about expected performance or results in the process. This data can provide insights that enable businesses to make necessary product refinements before initiating production. Superior efficacy The use of digital twins can be beneficial even after a new product has been put into production. This can help mirror and monitor production processes to achieve and maintain optimal efficiency throughout the whole manufacturing process. Product end-of-life As far as product lifecycle management is concerned, digital twins can assist manufacturers in determining what to do with products that have reached the end of their expected life and require final processing, whether through recycling or other means. They can figure out which product materials can be gathered with the help of digital twins. Cost Optimization in Manufacturing using Digital twin Transportation Cost Optimization Digital twins are commonly employed in high-value rolling commodities like trains to improve fuel efficiency and competitiveness (i.e., predictable repairs). However, in the case of passenger automobiles, cost savings have been recorded (for example, improving security maintenance at passenger doors and train wheels). When switching from conventional to state-based prevention in stock care, the rail transport operator claimed an average 10% savings. Oil and Gas Cost Optimization Companies frequently utilize digital twins to simulate and analyze functions like oil metals, pipelines, and processing plants. Among the business objectives supported by forecasting adjustments, machine learning, and other analyses are an increase in automated excavation or processing processes, a reduction in off-peak hours (FTE), and downtime, and the extension of the life of high-value assets. The oil and gas businesses claimed that historical data forecasts for building repairs had been discovered near a substantial portion of their offshore oil production. This gave them time to lead security operations. They saved a week of unplanned unemployment and production expenditures. In less than a year, their digital investment has returned twice as much as before. Supply Chain Cost Optimization Businesses are increasing their investment in IoT and supply chain monitoring. Utilizing modern supply chain characteristics such as digital twins can assist businesses in achieving enhanced business results. Monitoring the location and condition of high-value assets can assist in identifying anomalies that suggest an increased risk of theft. Additionally, this technology can be utilized to determine the location of assets for the purpose of recovery. While digital twins in many of these circumstances are straightforward – simply a location – in others, the supervised data may include natural characteristics such as the temperature inside the frozen container, generator fuel levels, or ways of detecting asset depletion or interruption. Final Word Is a digital twin necessary for your business? Yes, most certainly. By creating a comprehensive virtual picture of a company's processes, digital twins remove the element of uncertainty from decision-making. According to Gartner, 13% of organizations utilizing IoT already have digital twins in place, while 62% are either implementing or planning to do so. Hence, do not hesitate to deploy a digital twin in your organization, as it is worthwhile to invest in a digital twin that will help you lower overall production costs in the long run. FAQ Why is a digital twin necessary? Digital twins are becoming vital in business. By making a digital copy of the physical assets of a product or service in an industry, digital twins help with data analysis and give people a way to check how things work before they happen. This way, they can develop a solution to any problem before it happens. What data should be in the digital twin model? The concept of the digital twin is based on three unique components: the physical product, the digital/virtual product, and the connections between the two. How much does a digital twin cost? According to some experts’ estimations, the cost of implementing a digital twin is $50,000 or less. Complex processes will necessitate a substantial investment and a lengthy implementation period to model.

Read More
Manufacturing Technology

Actions C-suite Executives Can Take to Get the Most Out of Cloud Computing

Article | April 26, 2022

Cloud implementation alone will not provide value for a company. Executives at the highest levels must take the initiative towards digital transformation. C-suite executives play an important role in a business's digital transformation, which is critical to its success. C-level executives must consider cloud computing plans over the long term and ensure appropriate money and resources for cloud adoption. When it comes to cloud computing's objectives and benefits, C-level executives must take the lead and be involved in the strategies to ensure that the blueprint meets the business's requirements. CEOs, for example, must collaborate with CTOs and CIOs to maximize the benefits of cloud computing and ensure a smooth transition to digital transformation. In this article, we will discuss the five essential activities that the organization's c-level executives must undertake to get the most out of cloud computing. Five Cloud Adoption Actions C-suite Executives Must Take Maintaining a Consistent Financial Flow Cloud computing's objectives and benefits can be realized only with enough funding. As a CEO, it is critical to establish a financial funnel that supports each stage of the organization's cloud migration journey. It may take time for your firm to benefit from cloud computing fully. As a result, it is critical to ensure the financial backing is steady and consistent. Develop a Cloud-based Business Strategy A business transition is only as efficient as the planning that supports it. Therefore, to maximize the value of cloud computing, it is critical to developing a business strategy and an accompanying technology operating model. A model of this type harmonizes processes for collaborative engagement between IT and business, thereby unleashing potential. CIOs Can Help CFOs Grasp the Cloud Business Case Cloud is a business priority, not an IT one. Because it is based on technology, the CIO must convince other C-suite members, including the CFO. The CIO may directly address the CFO's business priorities by demonstrating how cloud technologies improve business processes and overall enterprise performance. The CIO can also explain how using cloud-based solutions saves money by letting an external provider handle maintenance and hosting. With technical knowledge of data and infrastructure requirements, the CIO can help the CFO understand the dangers of cloud computing and how to solve CFO concerns like data governance and compliance. The CIO and CFO can collaborate along with CEO to derive better results from the benefits of cloud computing. Collaborate on a Deployment Plan Cloud technologies can be disruptive, whether they solve a problem or add new capabilities. Co-developing a deployment strategy that minimizes downtime, quickly trains employees on the latest technology, and establishes clear success indicators helps minimize interruption. The discussion should begin with an evaluation of the company's requirements, followed by comparing the various cloud technologies. The CIO can assess the company's current technological environment and identify new technologies that can cover the gaps. Understand the Financial Consequences of Cloud Computing The adoption of cloud technology will significantly alter expenses and cost structures. It will take the CIO's expertise to predict these changes. Cloud computing offers more than just long-term cost benefits. Also, CFOs must be aware of the initial costs and their possible influence on corporate efficiency and revenue. The CIO will understand a cloud vendor's service level agreements (SLAs), prices, and requirements to migrate legacy systems and train personnel on the new technology. Because the CIO will be actively monitoring the company's move to the cloud, they may advise the CFO on predicted cost and cash flow changes. This is crucial for the CFO, who must give Wall Street quarterly capital and operating expense predictions. Final Word In summary, the benefits of cloud computing can be reaped by applying high-level strategies. A flawless collaboration between the CEO, CIO, and CTO can transform a business's digital transformation journey into a successful venture. Right communication is critical during the cloud migration process. Employees should get this communication from C-suite executives to foster trust and assure compliance with governance requirements. FAQ How does cloud-computing help in the manufacturing industry? Cloud computing enables manufacturers to run their operations more intelligently, which is enabled through increased use of data analytics. Indeed, for the majority of manufacturers, the cloud is rapidly becoming the primary location for data storage, analytics, and intelligence. Why do manufacturers adopt the cloud? Cloud adoption is a strategic decision made by businesses to save costs, mitigate risk, and increase the scalability of their database capabilities. Cloud adoption varies from organization to organization, depending on the degree of acceptance. What are the 7 R’s of cloud migration planning? Refactor/re-architect, re-platform, repurchase, re-host, relocate, retain, and retire are the seven R’s in cloud migration planning.

Read More
Manufacturing Technology

Top Electronics Manufacturing Trends to Watch in 2022

Article | October 13, 2021

The electronics manufacturing business is adopting new technologies to create smart electronics manufacturing products for its consumer base. Next-generation technologies are shaping the future of the manufacturing industry by enabling it to create technologically advanced and user-friendly products. Matt Mong, one of the manufacturing industry's leading professionals, stated in an interview with Media7, “Be Different. Don’t position your product in an existing category. Instead, create your category and make the competition irrelevant and obsolete.” – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca. The year 2022 will be a year of advancement and development for the electronics manufacturing industry. So, manufacturers are eager to embrace new technologies and produce more innovative, more user-friendly goods that become part of consumers' daily lives and meet their needs. To make the manufacturing process manageable and deliver advanced products, we will look at the top five trends flourishing in the electronics manufacturing industry. Top Five Electronics Manufacturing Industry Trends Future manufacturing technologies are transforming the electronics manufacturing industry's processes and products. Let's look at the top electronics manufacturing industry trends for 2022, which will propel the sector to new heights of technological advancement. Utilizing the Benefits of the Internet of Things The Internet of Things is being used in both the manufacturing process and the products themselves. It enables electronic manufacturing products and processes to become more intelligent and performance-driven to fulfill business and customer needs. In electronics manufacturing, the Internet of Things (IoT) enables businesses to solve common production challenges such as product quality issues, changing demands, and a complex global supply chain. As a result, it increases productivity and efficiency while reducing human effort. Industrial units may gather and analyze real-time data and processes using IoT-based sensor systems. Additionally, it assists organizations in managing data and transforms traditional manufacturing into an intelligent manufacturing unit. Using an ERP System to Maintain the Company's Competitive Edge ERP (Enterprise Resource Planning) is a centralized management system for all operational and business activities. The software automates all manufacturing processes and enables the electronics manufacturing sector to achieve higher precision throughout the manufacturing process and product delivery. ERP has the potential to boost productivity, improve efficiency, decrease expenses, and increase profitability. ERP enables electronics manufacturers to forecast, plan, modify, and respond to changing market demands. By using an ERP system in your manufacturing unit, you may expand your business and increase revenue. Making Use of Big Data The electronics manufacturing industry benefits from the use of big data to make critical business decisions. It aids in the integration of previously isolated systems to provide a comprehensive view of industrial processes. It also automates data gathering and processing, allowing for more excellent knowledge of each system individually and collectively. Big data also assists manufacturers in discovering new information and identifying trends, allowing them to optimize operations, improve supply chain efficiency, and find variables that impact manufacturing quality, volume, or consistency. In addition, big data assists the electronics manufacturing industry in keeping up with the rapidly changing digital world. Using AR and VR to Create Consumer-friendly Goods AR and VR are future manufacturing technologies that are changing electronics manufacturing products and driving growth. Robotics is a crucial usage of virtual reality in electronics production. Manufacturers may use powerful virtual reality software to design goods. This implementation of virtual reality software reduces production errors and saves time and money. AR in electronics manufacturing allows product developers to generate interactive 3D views of new products before production. AR and VR are part of Industry 4.0, the digital revolution of conventional electronics production units. Adoption of 3D Printing on a Wide Scale One of the essential advantages of today's electronics 3D printing is that companies can quickly prototype PCBs and other electrical devices in-house. In addition, 3D printing has simplified the electronics manufacturing process, and it is currently being utilized to manufacture multilayer printed circuit boards. It uses material jetting technology to spray conductive and insulating inks onto the printing surface. Let's look at an example of an analogy that worked for Jinzhenyuan - The Electronic Technology Co. Ltd., managed by Mr. Huang Runyuan, Jinzhenyuan's General Manager, and based on the concept of Industry 4.0. (Reference: Forbes) Jinzhenyuan - The Electronic Technology Co. Ltd. Takes a Significant Step Forward with Industry 4.0 Jinzhenyuan - The Electronic Technology Co. Ltd., formed in 2012, sells its products globally. In addition, it manufactures cellphones, computers, cars, and a variety of other consumer electronics. Due to changing market needs, the firm planned to upgrade its production facility to industry 4.0 by the end of 2017 to participate in smart manufacturing. The company increased production efficiency, shortened production cycles, and cut costs due to the digital revolution. Today, Jinzhenyuan is regarded as a model of digital transformation in the community in which it works. Let’s observe the statistics for Jinzhenyuan following the deployment of Industry 4.0. 32% improvement in total production efficiency 33% cost reduction 41% decrease in R&D to production cycles 51% reduction in substandard parts rate – from 3,000 to 1,500 per million Final Words The electronics manufacturing sector is on the verge of a digital revolution that will improve the production process efficiency and cost-effectiveness. Many of the world's biggest firms, like Apple, Microsoft, Hitachi, and Saline lectronics, are developing future agile factories to keep up with the world's digital transformation. Future manufacturing technology will help your manufacturing company make the manufacturing process more efficient and boost the business revenue. FAQs What are the future electronics technologies? Smart grid solutions, wearable technology devices, prefabricated goods, the Internet of Things, and robots are some of the future electronics innovations that will propel the business forward. Is the supply chain benefiting from new technology trends? Yes, supply chain management benefits from smart technology as well. Trucks equipped with cutting-edge technologies can get real-time data on the weather and road conditions ahead of time. It contributes to the supply chain process's reduction of possible risks. Which manufacturers are implementing the industry 4.0 concept in their factories? Whirlpool, Siemens, Hirotec, Tesla, Bosch, and Ocado, among others, have turned their traditional factories into digitally smart ones that incorporate all of the cutting-edge technology necessary to improve and optimize the production process. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What are the future electronics technologies?", "acceptedAnswer": { "@type": "Answer", "text": "Smart grid solutions, wearable technology devices, prefabricated goods, the Internet of Things, and robots are some of the future electronics innovations that will propel the business forward." } },{ "@type": "Question", "name": "Is the supply chain benefiting from new technology trends?", "acceptedAnswer": { "@type": "Answer", "text": "Yes, supply chain management benefits from smart technology as well. Trucks equipped with cutting-edge technologies can get real-time data on the weather and road conditions ahead of time. It contributes to the supply chain process's reduction of possible risks." } },{ "@type": "Question", "name": "Which manufacturers are implementing the industry 4.0 concept in their factories?", "acceptedAnswer": { "@type": "Answer", "text": "Whirlpool, Siemens, Hirotec, Tesla, Bosch, and Ocado, among others, have turned their traditional factories into digitally smart ones that incorporate all of the cutting-edge technology necessary to improve and optimize the production process." } }] }

Read More
Digital Transformation

Digital Twin in Manufacturing: Helping Businesses in Growing Their Revenue

Article | April 1, 2022

Digital twin technology in the manufacturing industry is playing a vital role in evaluating current and future production line conditions to increase OEE, productivity, and business profitability. It has become the most critical component of industry 4.0 because it collects precise data about your manufacturing process and uses that data to help you make wiser decisions. In other words, manufacturers can utilize digital twins to check and assess physical assets, processes, and systems in a virtual environment. In this article, we will discuss some of the major applications of digital twin technology in the manufacturing industry. Additionally, we also have a look at how this technology helps businesses increase their ROI. Digital Twin Technology Applications Product Development Product development is a long and intricate process. For example, it might take up to six years to develop and launch a new automobile model. The shift from the previous model to the new model must be seamless. A minor error during this process might have a detrimental effect on the brand's value and revenue. A digital twin software enables the integration of data between previous-generation models and the new concept's digital representations. Additionally, twinning facilitates communication between product designers, end users, and other stakeholders. When it comes to product testing, having digital twin platforms eliminates the need to wait for performance data from car trials to determine the product's performance and quality. Design Customization As consumers become more intelligent, and demand personalized items in a timely manner, the manufacturing industry will become increasingly competitive. According to an Industry Week Special Research Report on the future of manufacturing, industrial enterprises of all sizes place a premium on process improvement and customer relationship strengthening, while small businesses focus on addressing customer demand for product customization. To assist in the customization process, manufacturers use Twin Design Customization, which enables the virtual design and re-design of goods prior to generating a physical product that fully meets consumer specifications. Shop Floor Performance Improvement The shop-floor digital twin concept helps businesses to be proactive as the system is capable of identifying anomalous situations. This demands attention and process improvements prior to them escalating into a real problem or standstill. Predictive Maintenance Individual digital twin examples for equipment or manufacturing processes can detect deviations that indicate the need for preventative repairs or maintenance prior to the occurrence of a serious problem. Additionally, they can aid in the optimization of load levels, tool calibration, and cycle times. Can Digital Twin Boost Business Revenue? According to a recent study by Juniper Research, revenue from digital twins (a virtual representation of a connected physical product, process, or service throughout its lifecycle) will reach $13 billion by 2023. This is an increase from an estimated $9.8 billion in 2019, representing an average annual growth rate of 35%. The study also discovered that increased deployments of advanced sensors for data collection and technological advancements such as machine learning, artificial intelligence, and high-performance computing are enhancing the benefits of digital twins. So, how does a digital twin help your company's ROI? The digital twin improves transformation efficiency by providing platforms and technologies that simulate the impact of process changes in your supply chain – in a safe, secure, and digitally isolated environment – using real-time scenario modeling generated parallel with live supply chain operations. More than a visualization, a digital twin can help accelerate innovation, foster consensus, and save time and money by iteratively modeling changes, testing how components or systems operate, and inexpensively troubleshooting malfunctions in a virtual world. Final Words The digital twin platforms benefit manufacturing organizations across all verticals, including supply chain management, manufacturing operations, and logistics. Thus, technology is accelerating and enhancing the manufacturing industry to obtain more positive results and, in turn, increase its efficiency and, as a result, its return on investment. The digital twin will gain popularity as businesses learn to use it to their advantage. According to a 2020 analysis conducted by Research and Markets, up to 89% of all IoT platforms will incorporate digital twins by 2025. Thus, the future of digital twins is bright, and we may witness increased use of digital twins in the next few years. FAQ How digital twin help businesses? Digital twins can help businesses make better data-driven decisions. Businesses utilize digital twins to understand the state of physical assets, respond to changes, optimize operations, and add value to systems. How does digital twin save money? A digital twin can save time and money by iteratively modeling modifications, testing component or system functionality, and resolving faults in virtual reality. What are the essential components of digital twin technology? The concept of the digital twin is composed of three unique components: the physical product, the digital or virtual product, and the linkages between the two.

Read More

Spotlight

Kyowa Rubber Co.,ltd

Since our company was established in 1971, we have been engaging mainly in producing and selling industrial rubber products and also selling industrial machines spare parts. Under the rapid social situation changes, we have been working very hard every day to achieve our motto: for better quality with better technology.

Related News

Manufacturing Technology

MaxLinear Launches Product Design Kit for Active Electrical Cables Using Keystone PAM4 DSP

MaxLinear | February 02, 2024

MaxLinear, Inc. a leading provider of high-speed interconnect ICs enabling data center, metro, and wireless transport networks, announced the availability of a comprehensive product design kit (PDK) to optimize performance and accelerate the time to market for high-speed Active Electrical Cables (AEC) using MaxLinear’s 5nm PAM4 DSP, Keystone. The PDK is a cost-cutting and time-saving tool for cable manufacturers who want to quickly integrate Keystone into their active electrical cables. MaxLinear’s Keystone PAM4 DSP offers a significant power advantage in AEC applications, which is increasingly becoming a critical factor for hyperscale data centers. The use of 5nm CMOS technology enables designers and manufacturers to build high-speed cables that meet the need for low power, highly integrated, high performance interconnect solutions that will drive the next generation of hyperscale cloud networks. Manufacturers taking advantage of MaxLinear’s PDK to optimize cable designs using Keystone PAM4 DSP will gain a distinct advantage over competitor solutions when trying to maximize reach and minimize power consumption. The PDK makes Keystone easy to integrate with strong applications support, multiple tools to optimize and monitor performance, and reference designs (SW and HW) to accelerate integration. Sophisticated software allows for quick design optimization for the lowest possible power consumption and maximizing cable reach. Cable designers can constantly monitor performance, route signals from any port to any port, and take advantage of hitless firmware upgrades. “MaxLinear is focused on providing not only industry-leading interconnect technologies but also a comprehensive suite of tools to support our manufacturing and design partners,” said Drew Guckenberger, Vice President of High Speed Interconnect at MaxLinear. “Our development kit for our Keystone products provides them with a path to take products to market more quickly and more cost-effectively.” Active electrical cables (AECs) are revolutionizing data center connections. Unlike passive cables, they actively boost signals, allowing for longer distances (up to 7 meters for 400G), higher bandwidth, and thinner, lighter cables. This makes them ideal for high-speed applications like top-of-rack connections (connecting switches to servers within the same rack); direct digital control (enabling flexible interconnectivity within racks and across rows); and breakout solutions (splitting high-speed connections into multiple lower-speed channels). The high-speed interconnect market – which includes active optical cables, active electrical cables, direct attach copper cables, and others – is expected to grow to $17.1B by 2028, up from $10.7B in 2021 according to a market forecast report from The Insight Partners. The Keystone Family The Keystone 5nm DSP family caters to 400G and 800G applications, featuring a groundbreaking 106.25Gbps host side electrical I/O, aligning with the line side interface rate. Available variants support single-mode optics (EML and SiPh), multimode optics and Active Electrical Cables (AECs), offering comprehensive solutions with companion TIAs. Host side interfaces cover ethernet rates of 25G, 50G, and 100G per lane over C2M, MR, and LR host channels. The line side interfaces, tailored for 100G/λ DR, FR, and LR applications, also support these rates. These devices boast extensive DSP functionality, encompassing line-side transmitter DPD, TX FIR, receiver FFE, and DFE. With exceptional performance and signal integrity, these DSPs occupy a compact footprint (12mm x 13mm), ideal for next-gen module form-factors like QSFP-DD800 and OSFP800. Additionally, they are available as Known Good Die (KGD) for denser applications, such as OSFP-XD. About MaxLinear, Inc. MaxLinear, Inc. is a leading provider of radio frequency (RF), analog, digital, and mixed-signal integrated circuits for access and connectivity, wired and wireless infrastructure, and industrial and multimarket applications. MaxLinear is headquartered in Carlsbad, California. MaxLinear, the MaxLinear logo, any other MaxLinear trademarks are all property of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved.

Read More

Smart Factory

PsiQuantum, Mitsubishi UFJ Financial Group and Mitsubishi Chemical Announce Partnership to Design Energy-Efficient Materials on PsiQuantum’s

PsiQuantum | January 30, 2024

PsiQuantum and Mitsubishi UFJ Financial Group announced that they are beginning work with Mitsubishi Chemical Group on a joint project to simulate excited states of photochromic molecules which have widespread industrial and residential potential applications such as the development of smart windows, energy-efficient data storage, solar energy storage and solar cells, and other photoswitching use cases. Qlimate, a PsiQuantum-led initiative that includes MUFG as a partner, focuses on using fault-tolerant quantum computing to crack the most challenging computational problems and accelerate the development of scalable breakthroughs across climate technologies, including more energy-efficient materials. Mitsubishi UFJ Financial Group (MUFG) is committed to supporting the world’s transition to a sustainable future, and to encourage industry access to the most promising breakthrough technologies. By pioneering PsiQuantum’s Qlimate solutions with industry leader Mitsubishi Chemical, MUFG is at the forefront of quantum computing for sustainability. This joint project will determine whether high-accuracy estimates of excited state properties are feasible on early-generation fault-tolerant quantum computers, specifically focusing on diarylethenes used for energy-efficient photoswitching applications. The project will allow Mitsubishi Chemical to gain early insights into how and when fault-tolerant quantum computing can be deployed in support of critical, scalable, sustainable materials. Because predicting the optical properties of materials requires complex analysis of excited states, standard algorithmic techniques for simulating these molecules (such as the Density Functional Theory, or DFT) often produce qualitatively incorrect results. The project will bring together Mitsubishi Chemical’s deep experience of computational chemistry and PsiQuantum’s leading expertise in fault-tolerant quantum computing to push the boundaries of approaching the complex physics in these systems and pave the way to developing new, more powerful energy-efficient photonic materials. Philipp Ernst, Head of Solutions at PsiQuantum, said: “PsiQuantum has dedicated teams who identify, describe and solve complex problem sets with best-in-class quantum algorithms. These are designed specifically to run on fault-tolerant quantum computers and will tackle previously-impossible computational challenges. This partnership will leverage our team’s unique know-how and Mitsubishi Chemical’s expertise in photochromic materials. We are grateful for MUFG’s visionary support in our mission to deploy high-impact quantum computing solutions to fight climate change.” Suguru Azegami, Managing Director, Sustainable Business Division, MUFG said: “We are excited to partner with PsiQuantum and Mitsubishi Chemical on our journey to explore possibilities of quantum computing technologies to solve the imminent global challenge. PsiQuantum’s vision to develop the first utility scale quantum computer before the end of the decade has inspired us, which led our initiative to participate in the Qlimate partnership as the first and sole member from Japan. Mitsubishi Chemical is leading efforts to use the cutting-edge technology to develop next generation materials and we are honored to support the company as its long term financial partner.” Qi Gao, Senior Chief Scientist, Mitsubishi Chemical said: “We are pleased to be part of the partnership and are grateful for MUFG’s support. Mitsubishi Chemical’s over 40 years background in computational chemistry and PsiQuantum’s domain specific knowledge for quantum control is a great fit with the collaboration effort of improving calculation accuracy on quantum device. We hope the partnership will accelerate the innovation of revolutionizing computational studies in chemistry and materials science.” About PsiQuantum PsiQuantum is a private company, founded in 2015 and headquartered in Palo Alto, California. The company’s only mission is to build and deploy the world’s first useful, large-scale quantum computer. Many teams around the world today have demonstrated prototype quantum computing systems, but it is widely accepted that much larger systems are necessary in order to unlock transformational applications across drug discovery, climate technologies, finance, transportation, security & defense and beyond. PsiQuantum’s photonic approach enables rapid scaling via direct leverage of high-volume semiconductor manufacturing and cryogenic infrastructure. The company is partnered with the SLAC National Accelerator Laboratory at Stanford University and Sci-Tech Daresbury in the United Kingdom. About Mitsubishi UFJ Financial Group, Inc. (MUFG) Mitsubishi UFJ Financial Group, Inc. (MUFG) is one of the world’s leading financial groups. Headquartered in Tokyo and with over 360 years of history, MUFG has a global network with approximately 2,000 locations in more than 50 countries. The Group has about 160,000 employees and offers services including commercial banking, trust banking, securities, credit cards, consumer finance, asset management, and leasing. The Group aims to “be the world’s most trusted financial group” through close collaboration among our operating companies and flexibly respond to all of the financial needs of our customers, serving society, and fostering shared and sustainable growth for a better world. MUFG’s shares trade on the Tokyo, Nagoya, and New York stock exchanges. About the Mitsubishi Chemical Group Corporation Mitsubishi Chemical Group Corporation (TSE: 4188) is a specialty materials group with an unwavering commitment to lead with innovative solutions to achieve KAITEKI, the well-being of people and the planet. We bring deep expertise and material science leadership in core market segments such as mobility, digital, medical and food. In this way, we enable industry transformation, technology breakthroughs, and longer, more fruitful lives for us all. Together, around 70,000 employees worldwide provide advanced chemistry-based solutions to deliver the core elements of our slogan — “Science. Value. Life.”

Read More

Additive Manufacturing

Teledyne Relays Unveils Innovative Multi-Function Timer Series

Teledyne Relays, Inc. | January 29, 2024

Teledyne Relays, a leading provider of cutting-edge relay solutions, introduces its new Multi-Function Timer product series, showcasing the company's commitment to delivering advanced, reliable, and versatile solutions for the industrial automation sector. Teledyne Relays Multi-Function Timer MFT series is a state-of-the-art solution designed for a wide variety of applications that demand precise timing control. The user-friendly design features three potentiometers for easy selection of timing functions and ranges, while the LEDs provide at-a-glance feedback of timing and relay status. The MFT series also features 7 selectable timing functions for a wide variety of applications Timing ranges from 0.1 seconds up to 100 hours Compact 17.5mm housing preserves valuable panel space Supply Voltages: 24VDC & 24-240VAC OR 12-240VAC/DC 5A SPDT output relay Engineered with the needs of electrical engineers, panel builders, and automation engineers in mind, these timers find application in various industries, including but not limited to Industrial Automation Manufacturing Process Control Systems HVAC and Refrigeration Agriculture and Irrigation Power Distribution “With the new Multi-Function Timer series, Teledyne Relays continues to lead in providing reliable and versatile solutions for industrial automation, ensuring precise timing control,” said Michael Palakian, Vice President of Global Sales and Marketing at Teledyne Relays. The Multi-Function Timer series from Teledyne Relays ensures precise timing control, offering unparalleled reliability across diverse applications and is available for ordering from Teledyne Relays or an authorized distributor. About Teledyne Relays Teledyne Relays is a world leader in high-performance coaxial switches, electromechanical, and solid-state relays, offering a wide range of solutions for various applications in the aerospace and defense, telecommunications, test and measurement, and industrial markets. With over 60 years of experience, Teledyne Relay has established a reputation for quality, reliability, and customer service excellence. About Teledyne Defense Electronics Serving Defense, Space and Commercial sectors worldwide, Teledyne Defense Electronics offers a comprehensive portfolio of highly engineered solutions that meet your most demanding requirements in the harshest environments. Manufacturing both custom and off-the-shelf product offerings, our diverse product lines meet emerging needs for key applications for avionics, energetics, electronic warfare, missiles, radar, satcom, space and test and measurement.

Read More

Manufacturing Technology

MaxLinear Launches Product Design Kit for Active Electrical Cables Using Keystone PAM4 DSP

MaxLinear | February 02, 2024

MaxLinear, Inc. a leading provider of high-speed interconnect ICs enabling data center, metro, and wireless transport networks, announced the availability of a comprehensive product design kit (PDK) to optimize performance and accelerate the time to market for high-speed Active Electrical Cables (AEC) using MaxLinear’s 5nm PAM4 DSP, Keystone. The PDK is a cost-cutting and time-saving tool for cable manufacturers who want to quickly integrate Keystone into their active electrical cables. MaxLinear’s Keystone PAM4 DSP offers a significant power advantage in AEC applications, which is increasingly becoming a critical factor for hyperscale data centers. The use of 5nm CMOS technology enables designers and manufacturers to build high-speed cables that meet the need for low power, highly integrated, high performance interconnect solutions that will drive the next generation of hyperscale cloud networks. Manufacturers taking advantage of MaxLinear’s PDK to optimize cable designs using Keystone PAM4 DSP will gain a distinct advantage over competitor solutions when trying to maximize reach and minimize power consumption. The PDK makes Keystone easy to integrate with strong applications support, multiple tools to optimize and monitor performance, and reference designs (SW and HW) to accelerate integration. Sophisticated software allows for quick design optimization for the lowest possible power consumption and maximizing cable reach. Cable designers can constantly monitor performance, route signals from any port to any port, and take advantage of hitless firmware upgrades. “MaxLinear is focused on providing not only industry-leading interconnect technologies but also a comprehensive suite of tools to support our manufacturing and design partners,” said Drew Guckenberger, Vice President of High Speed Interconnect at MaxLinear. “Our development kit for our Keystone products provides them with a path to take products to market more quickly and more cost-effectively.” Active electrical cables (AECs) are revolutionizing data center connections. Unlike passive cables, they actively boost signals, allowing for longer distances (up to 7 meters for 400G), higher bandwidth, and thinner, lighter cables. This makes them ideal for high-speed applications like top-of-rack connections (connecting switches to servers within the same rack); direct digital control (enabling flexible interconnectivity within racks and across rows); and breakout solutions (splitting high-speed connections into multiple lower-speed channels). The high-speed interconnect market – which includes active optical cables, active electrical cables, direct attach copper cables, and others – is expected to grow to $17.1B by 2028, up from $10.7B in 2021 according to a market forecast report from The Insight Partners. The Keystone Family The Keystone 5nm DSP family caters to 400G and 800G applications, featuring a groundbreaking 106.25Gbps host side electrical I/O, aligning with the line side interface rate. Available variants support single-mode optics (EML and SiPh), multimode optics and Active Electrical Cables (AECs), offering comprehensive solutions with companion TIAs. Host side interfaces cover ethernet rates of 25G, 50G, and 100G per lane over C2M, MR, and LR host channels. The line side interfaces, tailored for 100G/λ DR, FR, and LR applications, also support these rates. These devices boast extensive DSP functionality, encompassing line-side transmitter DPD, TX FIR, receiver FFE, and DFE. With exceptional performance and signal integrity, these DSPs occupy a compact footprint (12mm x 13mm), ideal for next-gen module form-factors like QSFP-DD800 and OSFP800. Additionally, they are available as Known Good Die (KGD) for denser applications, such as OSFP-XD. About MaxLinear, Inc. MaxLinear, Inc. is a leading provider of radio frequency (RF), analog, digital, and mixed-signal integrated circuits for access and connectivity, wired and wireless infrastructure, and industrial and multimarket applications. MaxLinear is headquartered in Carlsbad, California. MaxLinear, the MaxLinear logo, any other MaxLinear trademarks are all property of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved.

Read More

Smart Factory

PsiQuantum, Mitsubishi UFJ Financial Group and Mitsubishi Chemical Announce Partnership to Design Energy-Efficient Materials on PsiQuantum’s

PsiQuantum | January 30, 2024

PsiQuantum and Mitsubishi UFJ Financial Group announced that they are beginning work with Mitsubishi Chemical Group on a joint project to simulate excited states of photochromic molecules which have widespread industrial and residential potential applications such as the development of smart windows, energy-efficient data storage, solar energy storage and solar cells, and other photoswitching use cases. Qlimate, a PsiQuantum-led initiative that includes MUFG as a partner, focuses on using fault-tolerant quantum computing to crack the most challenging computational problems and accelerate the development of scalable breakthroughs across climate technologies, including more energy-efficient materials. Mitsubishi UFJ Financial Group (MUFG) is committed to supporting the world’s transition to a sustainable future, and to encourage industry access to the most promising breakthrough technologies. By pioneering PsiQuantum’s Qlimate solutions with industry leader Mitsubishi Chemical, MUFG is at the forefront of quantum computing for sustainability. This joint project will determine whether high-accuracy estimates of excited state properties are feasible on early-generation fault-tolerant quantum computers, specifically focusing on diarylethenes used for energy-efficient photoswitching applications. The project will allow Mitsubishi Chemical to gain early insights into how and when fault-tolerant quantum computing can be deployed in support of critical, scalable, sustainable materials. Because predicting the optical properties of materials requires complex analysis of excited states, standard algorithmic techniques for simulating these molecules (such as the Density Functional Theory, or DFT) often produce qualitatively incorrect results. The project will bring together Mitsubishi Chemical’s deep experience of computational chemistry and PsiQuantum’s leading expertise in fault-tolerant quantum computing to push the boundaries of approaching the complex physics in these systems and pave the way to developing new, more powerful energy-efficient photonic materials. Philipp Ernst, Head of Solutions at PsiQuantum, said: “PsiQuantum has dedicated teams who identify, describe and solve complex problem sets with best-in-class quantum algorithms. These are designed specifically to run on fault-tolerant quantum computers and will tackle previously-impossible computational challenges. This partnership will leverage our team’s unique know-how and Mitsubishi Chemical’s expertise in photochromic materials. We are grateful for MUFG’s visionary support in our mission to deploy high-impact quantum computing solutions to fight climate change.” Suguru Azegami, Managing Director, Sustainable Business Division, MUFG said: “We are excited to partner with PsiQuantum and Mitsubishi Chemical on our journey to explore possibilities of quantum computing technologies to solve the imminent global challenge. PsiQuantum’s vision to develop the first utility scale quantum computer before the end of the decade has inspired us, which led our initiative to participate in the Qlimate partnership as the first and sole member from Japan. Mitsubishi Chemical is leading efforts to use the cutting-edge technology to develop next generation materials and we are honored to support the company as its long term financial partner.” Qi Gao, Senior Chief Scientist, Mitsubishi Chemical said: “We are pleased to be part of the partnership and are grateful for MUFG’s support. Mitsubishi Chemical’s over 40 years background in computational chemistry and PsiQuantum’s domain specific knowledge for quantum control is a great fit with the collaboration effort of improving calculation accuracy on quantum device. We hope the partnership will accelerate the innovation of revolutionizing computational studies in chemistry and materials science.” About PsiQuantum PsiQuantum is a private company, founded in 2015 and headquartered in Palo Alto, California. The company’s only mission is to build and deploy the world’s first useful, large-scale quantum computer. Many teams around the world today have demonstrated prototype quantum computing systems, but it is widely accepted that much larger systems are necessary in order to unlock transformational applications across drug discovery, climate technologies, finance, transportation, security & defense and beyond. PsiQuantum’s photonic approach enables rapid scaling via direct leverage of high-volume semiconductor manufacturing and cryogenic infrastructure. The company is partnered with the SLAC National Accelerator Laboratory at Stanford University and Sci-Tech Daresbury in the United Kingdom. About Mitsubishi UFJ Financial Group, Inc. (MUFG) Mitsubishi UFJ Financial Group, Inc. (MUFG) is one of the world’s leading financial groups. Headquartered in Tokyo and with over 360 years of history, MUFG has a global network with approximately 2,000 locations in more than 50 countries. The Group has about 160,000 employees and offers services including commercial banking, trust banking, securities, credit cards, consumer finance, asset management, and leasing. The Group aims to “be the world’s most trusted financial group” through close collaboration among our operating companies and flexibly respond to all of the financial needs of our customers, serving society, and fostering shared and sustainable growth for a better world. MUFG’s shares trade on the Tokyo, Nagoya, and New York stock exchanges. About the Mitsubishi Chemical Group Corporation Mitsubishi Chemical Group Corporation (TSE: 4188) is a specialty materials group with an unwavering commitment to lead with innovative solutions to achieve KAITEKI, the well-being of people and the planet. We bring deep expertise and material science leadership in core market segments such as mobility, digital, medical and food. In this way, we enable industry transformation, technology breakthroughs, and longer, more fruitful lives for us all. Together, around 70,000 employees worldwide provide advanced chemistry-based solutions to deliver the core elements of our slogan — “Science. Value. Life.”

Read More

Additive Manufacturing

Teledyne Relays Unveils Innovative Multi-Function Timer Series

Teledyne Relays, Inc. | January 29, 2024

Teledyne Relays, a leading provider of cutting-edge relay solutions, introduces its new Multi-Function Timer product series, showcasing the company's commitment to delivering advanced, reliable, and versatile solutions for the industrial automation sector. Teledyne Relays Multi-Function Timer MFT series is a state-of-the-art solution designed for a wide variety of applications that demand precise timing control. The user-friendly design features three potentiometers for easy selection of timing functions and ranges, while the LEDs provide at-a-glance feedback of timing and relay status. The MFT series also features 7 selectable timing functions for a wide variety of applications Timing ranges from 0.1 seconds up to 100 hours Compact 17.5mm housing preserves valuable panel space Supply Voltages: 24VDC & 24-240VAC OR 12-240VAC/DC 5A SPDT output relay Engineered with the needs of electrical engineers, panel builders, and automation engineers in mind, these timers find application in various industries, including but not limited to Industrial Automation Manufacturing Process Control Systems HVAC and Refrigeration Agriculture and Irrigation Power Distribution “With the new Multi-Function Timer series, Teledyne Relays continues to lead in providing reliable and versatile solutions for industrial automation, ensuring precise timing control,” said Michael Palakian, Vice President of Global Sales and Marketing at Teledyne Relays. The Multi-Function Timer series from Teledyne Relays ensures precise timing control, offering unparalleled reliability across diverse applications and is available for ordering from Teledyne Relays or an authorized distributor. About Teledyne Relays Teledyne Relays is a world leader in high-performance coaxial switches, electromechanical, and solid-state relays, offering a wide range of solutions for various applications in the aerospace and defense, telecommunications, test and measurement, and industrial markets. With over 60 years of experience, Teledyne Relay has established a reputation for quality, reliability, and customer service excellence. About Teledyne Defense Electronics Serving Defense, Space and Commercial sectors worldwide, Teledyne Defense Electronics offers a comprehensive portfolio of highly engineered solutions that meet your most demanding requirements in the harshest environments. Manufacturing both custom and off-the-shelf product offerings, our diverse product lines meet emerging needs for key applications for avionics, energetics, electronic warfare, missiles, radar, satcom, space and test and measurement.

Read More

Events