Cyber Threats to Manufacturing Companies and Ways to Mitigate

CYBER THREATS TO MANUFACTURING
Cyber manufacturing is a term that refers to a modern manufacturing system that allows for asset management, reconfiguration, and productivity maintenance in a way that is easy to see and use.

Industry 4.0 anticipates an era of enormous opportunity for innovation and prosperity. Additionally, it introduces new risks and challenges in today's manufacturing cyber scene.

“Cybersecurity is starting to become more prevalent within organizations, so opportunities to grow in this industry will never end if you have the correct drive and determination.”

– Joe Boyle, SEO of SaltDNA

Numerous manufacturing organizations are experiencing an increase in cyber-attacks on control systems used to oversee industrial processes. Some of these systems may include programmable logic controllers and distributed control systems, as well as embedded systems and industrial Internet of Things (IoT) devices.

To help you develop a strong and secure manufacturing operation, this article will outline the multiple sorts of cyber-attacks in manufacturing and how you may improve manufacturing security. Let's begin with the importance of cybersecurity in the manufacturing industry.

Why is Cybersecurity in Manufacturing Crucial?

From January to March of 2019, the number of ransomware attacks in the manufacturing industry has increased by 156%. This is a big change, so it's important to have strong cyber security in the manufacturing process. Wherever software is in use, there is a high probability of cyber-attacks. The manufacturing industry is digitizing itself with cutting-edge technologies connected via the internet and various software. Therefore, the manufacturing industry is particularly vulnerable to cyber-attacks.

The following are some of the key reasons why manufacturers should prioritize manufacturing cybersecurity:
  • Increase in the use of IoT devices in the industry
  • Increase in the cost of data breaches
  • Increase in the number of cyber-attacks across industries
  • Increase in the severity of cyber-attacks
  • Increase in the use of widely accessible hacking tools
  • Increase in the use of remote workers

Five Major Types of Manufacturing Cyber Attacks


Ransomware

Due to the rising value of ransomware, cybercriminals have switched their attention away from selling personal and financial data. Unfortunately, industrial companies stand to lose a lot. Until the hacker's demands are met, this malware locks files on a network and makes them impossible to use.

If a ransom (typically millions) is not paid, threat actors may sell or leak important data. Until the ransom is paid, ransomware users render the company's network inaccessible. This strategy works well for attackers in the manufacturing industry because downtime is costly, and no manufacturer would like to encounter it for a long time.

Ransomware assaults generally occur on weekends or holidays to maximize damage before the attack is realized. This allows hackers to wait in comfort during a busy manufacturing period. Manufacturing enterprises are a desirable target for numerous reasons. A wide network of OT devices and a long supply chain make many endpoints and security flaws.

Phishing

Phishing is the most common type of network assault. Phishing emails are frequently used to gain access to a target firm to carry out further detrimental assaults or acts. For instance, in 2016, a CEO sent an email to a global solar panel manufacturer’s employee.

The email claimed that precise information about internal employees was required. The employee transmitted the data without confirming it. The CEO received the information. Unfortunately, the CEO was a cybercriminal, and the employee was phished, disclosing firm secrets. Perhaps the next generation of thieves will commit even more advanced and sophisticated penetrations and attacks.

Phishing attacks are characterized by the following characteristics:
  • Emails with malicious attachments
  • Emails with hyperlinks that differ from well-known websites and are misspelt
  • Emails with an attention-grabbing title or content
  • Emails from an unusual sender
  • Urgent orders or to-do items

Supply Chain Attacks

In the manufacturing business, no single firm can complete the entire production cycle. It must rely on several manufacturers' parts and components to complete the manufacturing and assembly of the entire product. As a result, numerous parties should coordinate to ensure an effective production process. This technique introduces the risk of supply chain attacks.

Numerous criminals utilize supply chain hacks to steal critical data and intellectual property rights from manufacturers. If a malicious attacker gets permission from the manufacturer's partner to access their network, they may steal critical information or data, and even essential manufacturing records, wreaking havoc on the business.

Additionally, manufacturers' external software or hardware poses security vulnerabilities, and there is a danger of attack along the equipment and system supply chain. Most products are developed using open-source or closed-source components, yet all these components have some level of security vulnerability.

The following are common indicators that your network has been compromised by a third party:
  • Incorrect usernames and passwords are used to access software systems
  • Strange redirects to unknown websites
  • Pop-up advertisements
  • Ransomware messages
  • Software freezes or crashes

IoT Attacks

As the intelligent transformation of manufacturing continues to progress, the Internet of Things' role in facilitating this process becomes increasingly critical. Manufacturers can optimize production processes more effectively and precisely by utilizing various IoT devices. For instance, businesses track assets, collect data, and perform analysis using IoT sensors embedded in devices. These sensors continuously monitor the various operating parameters of the equipment and critical data to enable automatic recovery and minimize maintenance downtime.

Increased security risks occur because of the proliferation of various IoT devices in manufacturing plants. IoT devices have networking capabilities and can be easily connected to a network. Typically, manufacturers' IoT, industrial control, and office networks are not adequately isolated. They can get into the industrial control network through public flaws or zero-day attacks on IoT devices. They can then launch malicious attacks on critical production equipment, which can stop production and cause processing accidents.

Insider Threats

Most manufacturing cyber attacks are carried out by outsiders, but nearly 30% originate from insiders or those with access to the company. As with external hackers, these attacks are frequently motivated by financial gain. However, some employees or former employees attack a business out of rage or dissatisfaction.

Internal threat actors do not require network access. They can access sensitive data by leveraging their existing knowledge or credentials. A threat actor is more likely to carry out an attack invisibly and undetected with pre-existing credentials. Unfortunately, former employees can typically access this information if passwords or entry methods are not changed to prevent such attacks.

Because of the increased use of personal devices and remote work, employees can unintentionally be the cause of an internal breach. Most businesses were unprepared for the regulations that would accompany a global pandemic. As manufacturing companies looked for ways to stay afloat by maintaining employees remotely, few had the necessary technological equipment to keep each employee as safe as the company's employees.

Many home-based employees discovered that working from home was not easy, as the line between personal and work time became increasingly blurred and eventually vanished. For hackers, these home networks and the use of unprotected personal devices have opened a new avenue for obtaining sensitive data from large and small businesses.

How to Mitigate Manufacturing Cyber Attack


Make Sure Your Software Is up to Date

Install software patches to prevent attackers from exploiting known issues or vulnerabilities. Numerous operating systems include an automatic update feature. If available, ensure that this option is enabled.

Utilize Current Antivirus Software

Install software patches to prevent attackers from exploiting known issues or vulnerabilities. Numerous operating systems include an automatic update feature. Ensure that this option is enabled if it is available.

Make Use of Strong Passwords

Set up password rules. A stolen or default password is used in 63% of confirmed data breaches. Create strong passwords that are difficult to guess and use unique passwords for each program and device. Experts advise using passphrases or passwords of at least 16 characters.

Make Use of MFA Tool

MFA validates a user's identity using at least two identification components. This stops attackers from taking advantage of weak authentication mechanisms, which lowers the risk of someone getting into your account even if they know the login credentials.

Train Employees on Security Awareness

Security awareness training unites employees, eliminates risks and events, and protects both the company and the employees. Employees should also be taught how to look for and deal with threats like phishing.

Final Word

Industry 4.0 is all about smart technologies that operate with the help of the internet. It increases the probability of manufacturing equipment and software being hacked. Therefore, while you intend to create a smart environment in your manufacturing facility, you must take the necessary cyber security measures.

The strategies mentioned in this article to mitigate the cyber-attacks will ensure that you take every precaution to keep the working environment safe. There are many ways to protect your manufacturing business from cyberattacks. The techniques and the types of attacks described in this article will help you know what to opt for and which attacks to look for in your manufacturing business.

FAQ


What are the most common cyber security threats?

Phishing attacks are the most common cyber security threats that employees fall for. With the advancement of phishing attacks, many employees lack the knowledge necessary to spot a phishing email. Additionally, many employees have poor cyber security practices, such as using the same password for work and personal devices, which is also one of the reasons for rising phishing attacks.

What are the cyber security challenges in Industry 4.0?

Smart factories are vulnerable to the same types of attacks as conventional networks, including vulnerability exploitation, malware, denial of service (DoS), device hacking, and other typical attack tactics.

What is CPS in manufacturing?

CPS (Cyber Physical Systems) are defined as designed systems that are comprised of and reliant on the seamless integration of computer algorithms and physical components.

Spotlight

Wirtz Manufacturing Company

Located in Port Huron, Michigan United States of America. Leaders in the Design and manufacturers of equipment for the lead acid battery industry. Our Sales staff and service technicians travel worldwide to sell and service our equipment, and train our customers. Company sells our products worldwide

OTHER ARTICLES

How IoT in Manufacturing is Changing Business Dynamics

Article | January 8, 2021

The pandemic is considered a catalyst of change. It has forced many industries worldwide to transform and adapt to various digital solutions. A collection of advanced technologies such as IoT, artificial intelligence, machine learning and more have been widely adopted to support innovation-driven growth strategies. Majority of industry leaders are describing these technologies as industry 4.0 revolution. Entrepreneurs from the manufacturing industry are among them. Many novel opportunities in the manufacturing industry are flourishing with the addition of IoT. The idea of digital transformation has become a necessity rather than an add-on cost for companies. Having said that, the manufacturing industry is on the cusp of a revolution—the internet of things revolution! According to IDC, in 2020, the manufacturing industry experienced notable growth, with a CAGR of 12.4%, which forecasts by 2025. The internet of things in manufacturing enabled smart manufacturing, known as Industrial IoT (IIoT). This development introduced transparency of processes, products, assets, resources, connectivity, advanced analytics, automation, and other advanced-manufacturing technologies. The addition, the internet of things in manufacturing gained momentum as it helped companies transform their operations. It benefitted businesses in various aspects such as production efficiency to product customization, improvements in speed to market, service effectiveness, and even in new business model creation. A recent MPI 2020 Industry 4.0 study revealed that 83% of manufacturing leaders consider “industry 4.0 is extremely important” to their companies, and 56% believe that “Industry 4.0 will have a significant impact” in the next five years. This blog will give you an overview of IoT as well as how its impact is influencing and transforming the manufacturing industry. An Overview: The Internet of Things IoT refers to a network of everyday devices, machines, and other objects equipped with computer chips and sensors. It helps in collecting and transmitting data through the internet. There are several applications of IoT in manufacturing like creating digital solutions, security systems, and communication medium or for upgrading manufacturing processes. These implementations are affecting the overall ecosystem of businesses. IoT is not a novel technological concept but it is being widely circulated in the manufacturing industry in the current times. It is now a developing trend and an innovative technology, enabling rapid data flow while providing the ability to monitor and manage processes in real time. What is IoT in manufacturing? IoT in manufacturing refers to the Industrial Internet of Things (IIoT). It includes interconnected sensors, instruments, and devices networked together with computers’ industrial applications, including manufacturing and energy management. Industrial IoT in manufacturing shapes organizations with greater capabilities and connectivity to increase their pace of identifying bottlenecks in processes and manage operations with greater agility. It has been observed that during the pandemic, the IoT in manufacturing has gained prominence because now the goal is to create a completely automated process and turn it into a smart factory for the years to come. Top Use Cases of Internet of Things in Manufacturing Without visibility, there is no accountability. The value of the IoT in manufacturing is rising unprecedentedly after the manufacturing industry faced challenges during the pandemic.The novel applications of IoT in the manufacturing industry offer hope for massive opportunities to enter in the future. The industrial IoT in manufacturing is slowly transferring traditional manufacturing supply chains into dynamic, interconnected systems, helping to change the way products were being made before and ensuring better safety for human operators to a high level. So, how is IoT used in manufacturing? Here are the top three use cases of IoT trends in manufacturing: •Remote monitoring and operations •Predictive maintenance and smart asset management •Autonomous manufacturing Other than this, the need of IoT in manufacturing is also processed by wireless connectivity. Today, IoT depends on low power and long-range, as the Narrowband (NB) standard addresses it. Thus, there are now a host of IoT use cases, including smart metering, asset tracking, logistics tracking, machine monitoring, and more. However, as the comprehensive 5G connectivity is about to enter the technology sphere, there will be a new level of speed, efficiency, and performance, which will help unlock new IoT use cases in the future. A 2020 report from Bloor Research reveals that the future of 5G, edge computing, and IoT are critical enablers for the manufacturing industry. The Role of the Internet of Things in Manufacturing The applications of IoT in the manufacturing industry have been there for a long time. However, the pandemic forced many manufacturing units and factories to adopt the emerging IoT trends in manufacturing to revolutionize the mass production of goods and boost other industries' output. The benefits of the IoT in manufacturing are becoming popular by the day. Whether it’s about gathering data from multiple machines or delivering real-time data to the manager of operations, the results of this are enhanced operational performance and reduced workload. Apart from this, goods are tracked and equipment maintenance is predicted easily. All of these functions, through analysis, help manufacturers to identify factors of failure or malfunction. By knowing about it on time, they can take appropriate actions and measures to overcome them. So, whether it is IoT in car manufacturing, IoT in apparel manufacturing, IoT in automotive manufacturing, or other industries, IoT is booming in every way. Even the companies specialized in making manufacturing machines are following the latest IoT trends in the manufacturing industry. To get more specific about the impact of IoT in the manufacturing industry, here are the most sought-after roles: Quality Level 4.0 Most manufacturers faced difficulties while maintaining quality consistency, as the pandemic forced them to reduce human interaction at work. This aroused complexities in various manufacturing processes. So, by implementing IoT, companies have easily been able to produce good quality products through multiple applications, latest machines, equipment, and tools. In this way, the IIoT’s impact in the manufacturing industry will indeed enhance the quality level of products to manufacture in the future. In addition, as IoT has a mass of applications in manufacturing, it is also facilitating the production rate of products. This is one of the major benefits of IoT. It increases production rate by automatically monitoring the development cycles at each stage. In this way, the quality aspect of a product remains under observation throughout the production process. IoT Enables Power of Prediction Predictive maintenance is a big thing. One of the significant answers to how IoT is being used in manufacturing is that it improves operating efficiencies. It also ensures that factory equipment and other assets are adequately working, which stays a major priority for manufacturers. Even a small malfunction can lead to substantial delays in production, which could delay or even cancel orders. In these situations, IoT technology helps to overcome these challenges. The deployment of wireless sensors throughout the machines can easily help managers detect issues beforehand and resolve them. This shows the power of prediction it provides. The emerging IoT systems supported by wireless technologies have sense-warning signs in equipment that sends data to the maintenance staff so they could proactively repair the equipment. This avoids major delays in future production schedules. In addition, manufacturers could also gain other benefits of IoT by getting safer plant environments and increased equipment life. This is how the Internet of Things is becoming crucial for the manufacturing industry, especially after the pandemic, and is creating possibilities for manufacturing companies to gain predictable revenue in future. Supply Chain Management Emerging applications of IoT in the manufacturing industry are allowing companies to monitor all the events related to supply chain management. It includes shipments of supplies, tracking of transportation services like shipping containers, logistics data, and more. Data analyzed through devices could also help companies improve logistics by finding problem areas and resolving them in no time. Apart from this, IoT devices also eliminate a big chunk of manual documentation related to operations and others with a novel Enterprise Resource Program (ERP). This new invention of the Internet of Things in manufacturing facilitates cross-channel visibility into managerial, financial, and operation departments. Remote Production Control Many manufacturing companies relocated their computational resources to a custom cloud or connected on modern BAAS (backend as a service) or PAAS (platform as a service) platforms. Thanks to the IoT applications that benefitted the manufacturing industry during challenging times in the pandemic. In this case, the data is transmitted to the industrial automation system. In addition, it controls the overall process of machinery as well as production. IoT in steel manufacturing, oil and gas industries, and power generation have already gained benefits from this function of IoT technology. These industries used IoT devices and created a control system distantly. Harley Davidson, Cisco, and GE are some of the finest examples of using IoT in manufacturing. They have set history by reaping the best benefits of the Internet of Things in manufacturing and overcame hurdles bravely during the pandemic. Their IoT-driven manufacturing process achieved a massive production rate in comparison to other industries during the pandemic phase. Cisco developed a “virtual” manufacturing execution system platform (VMES) through leveraging technologies such as the cloud, big data analytics, and the internet of things to gather real-time information from production machines. In the same vein, Harley Davidson and GE connected every asset on the plant floor and production to IoT devices and tracked performance in real-time. They installed 10,000+ sensors that looked after machine operating data, measured temperature, humidity, and air pressure in real-time without any human interaction. So, information obtained through distant control systems provides a much clearer and faster insight into the actual production in the field. It assists staff in analyzing all the data and makes all the operational tasks convenient. This makes the IoT technology a core instrument in ensuring safe automated production, monitoring the workers, and helping staff members to maintain a proper workflow of business. With all that said about IoT’s role in the manufacturing industry, does this mean that the industry is on the edge of leading with IoT? The answer is ‘yes.’ This is proved through some findings that are as follows: • 76% of manufacturers plan to increase their use of smart devices in manufacturing processes in the next two years. • 63% of companies have already implemented IoT technologies into their products, especially after the pandemic, and ready to supply manufacturers globally. • 71% of them believe that IoT will have a significant impact (24%) or impact (47%) on their business over the next five years. The Right Time to Invest Manufacturers globally believe in the power of IoT and have developed the confidence of implementing it now. The idea of smart manufacturing with IoT is to use connectivity technologies such as industrial networks, Wi-Fi, M2M, and more to link factory automation assets, such as production equipment, robots, and more. This also extends to take advantage of end-user apps, such as MES, PLM, ERP, and mobile devices for more active and precise business decision-making. Hence, getting an IoT solution for your manufacturing business is essential, mainly as the pandemic has shifted the paradigm of business operations. To gain IoT’s competitive advantages, considerable investments are necessary for your business to provide your staff with proper working methods. For manufacturers, globally, the IoT’s impact will be seen in every aspect of their business and thus allow them to thrive even in the most difficult of times in the future. Frequently Asked Questions How to implement IoT in manufacturing? There are many factors to be taken into consideration for implementing IoT in manufacturing. However, some of the best are discussed below: • Businesses should invest more at an early stage of planning to understand the needs of their end-users • Introduce digitally forward tools • Identify risk areas of manufacturing • Introduce a broad range of technologies including cellular, Wi-Fi, Lora, and Sigfox as advanced communication system What is IoT in manufacturing? Industrial IoT (IIoT) in manufacturing adds intelligence to manufacturing equipment, processes, and management. It enables smart manufacturing solutions with the help of connected sensors and devices at the network edge. What are the six levels of IoT? The six levels of IoT are as follows: • Device • Resource • Database • Analysis • Application • Controller service What are the types of IoT? The leading types of IoT are: • Low Power Wide Area Networks (LPWANs) • Cellular • Wi-Fi • Bluetooth • Radio Frequency Identification (RFID) • Zigbee. What are the components of IoT? The various components of IoT are: • Sensors/Devices • Connectivity • Data • Analytics • Cloud/server infrastructure • Applications { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "How to implement IoT in manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "There are many factors to be taken into consideration for implementing IoT in manufacturing. However, some of the best are discussed below: Businesses should invest more at an early stage of planning to understand the needs of their end-users Introduce digitally forward tools Identify risk areas of manufacturing Introduce a broad range of technologies including cellular, Wi-Fi, Lora, and Sigfox as advanced communication system" } },{ "@type": "Question", "name": "What is IoT in manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Industrial IoT (IIoT) in manufacturing adds intelligence to manufacturing equipment, processes, and management. It enables smart manufacturing solutions with the help of connected sensors and devices at the network edge." } },{ "@type": "Question", "name": "What are the six levels of IoT?", "acceptedAnswer": { "@type": "Answer", "text": "The six levels of IoT are as follows: Device Resource Database Analysis Application Controller service" } },{ "@type": "Question", "name": "What are the types of IoT?", "acceptedAnswer": { "@type": "Answer", "text": "The leading types of IoT are: Low Power Wide Area Networks (LPWANs) Cellular Wi-Fi Bluetooth Radio Frequency Identification (RFID) Zigbee" } },{ "@type": "Question", "name": "What are the components of IoT?", "acceptedAnswer": { "@type": "Answer", "text": "The various components of IoT are: Sensors/Devices Connectivity Data Analytics Cloud/server infrastructure Applications" } }] }

Read More
Manufacturing Technology, Operations

Size, Scope, and Forecast of the Air Cannon System Market

Article | July 11, 2022

During the forecast period of 2022-2029, the Air Cannon System market size is expected to develop revenue and exponential market growth at a remarkable CAGR. The market's expansion can be attributed to rising demand for Air Cannon System in construction, industrial, mining, and other applications on a global scale. At the country level, the report provides insights into the lucrative opportunities in the Air Cannon System Market. The report also includes a precise cost, segment, trend, region, and commercial development of the major key players worldwide for the projected period. The comprehensive report on the Air Cannon System Market will analyse data changes and their global market impact. It also examines the overall growth of companies in the market as well as their ability to manage and control profit levels, which is critical for any investor looking to open and expand a business in the same market. The report aims to provide investors with an accurate prediction of market development over time by providing a detailed analysis of current trends and key changes that serve as a framework for the company to calculate market growth potential in the near future. The report also tracks and records significant events such as business combinations, joint initiatives, accomplishments, new product developments, or market activities. The main purpose is to provide a growth map from which the benefits can be calculated. It includes Porter's Five Forces analysis, which explains the five forces: customer bargaining power, distributor bargaining power, the threat of substitute products, and the degree of competition in the Air Cannon System market, as well as a market overview, which includes market dynamics. It describes the various market ecosystem players, such as system integrators, middlemen, and end users. Another major topic covered in the report is the competitive environment of the Air Cannon System market. The research also provides in-depth details about the COVID-19 scenario and its impact on the market to help with decision-making.

Read More
Manufacturing Technology

Considering ERP in Manufacturing? Determine ROI

Article | April 21, 2022

Manufacturing ERP (enterprise resource planning) benefits organizations in multiple ways, as it simplifies decision-making for top management by utilizing data from smart dashboards and consolidated data. The requirements of manufacturing companies are extremely precise. These include elements like planning and management. Manufacturing ERP systems are designed to meet these requirements. In other words, manufacturing ERP is a specialized form of an ERP system designed to streamline and automate all manufacturing processes. It applies the same ERP principles to manufacturing organizations to increase efficiency. Numerous businesses have implemented or are planning to implement ERP systems in their manufacturing organizations. They are, however, constantly on the lookout for the best return on investment when it comes to manufacturing ERP software. In this article, we'll look at how to calculate the return on investment for manufacturing ERP solutions to help you get a better grasp of the investment viewpoint for manufacturing ERP. How to Determine Manufacturing ERP ROI? Organize Data for ROI ERP evaluation, selection, and implementation require collecting a large amount of business data. Putting all of this information together can be a daunting task. Therefore, individuals from each department should provide objective feedback to help mitigate bias and ensure consistency. Focus on People and Processes Rather than Technology You can increase your ROI by mitigating the technical aspects of an ERP system. Get an understanding of how it will improve your processes and how much money you will save over time due to those improvements. Your return on investment will depend on how well you effectively manage business process reengineering and organizational change. Invest Time and Effort in Your ERP Deployment It is critical to set realistic expectations and forecast the ROI benefits. Estimate the project's time, cost, and effort by consulting an expert, preferably not the ERP vendor, as their estimates may not be entirely accurate for their benefit. Predicting ERP Cost Costs associated with ERP, such as licenses and hardware, are easily quantifiable. Apart from these fees, additional expenses must be addressed and evaluated. They include subscription fees for SaaS, consulting, maintenance, and user fees. Consider the following questions: How you will implement your solution: Cloud or On-Premise? How many users are required? What equipment do you require to operate your business? What implementation and training requirements do you have? Calculating these expenditures may take considerable time. Mentioned below is the list of costs that can be estimated prior to investing: Out-of-the-box System Price Many business owners believe that this ERP cost is straightforward to determine because it is based on the vendor's quote. That, however, depends upon the modules and deployment options required in your business. License Fees – on Premise Vs. SAAS On-premise ERP software runs on your company's servers. This incurs a one-time license charge. On-premise deployments need organizations to maintain their servers to assure software functionality both in the present and future. It is therefore important to factor in these costs. Licenses are “repurchased” every five years, which is another cost to consider. Cloud ERP SaaS is hosted remotely on a third-party server and is accessible online. You must pay a monthly subscription fee until you stop using the system. Updates to the ERP system are free. Consultancy Costs and Vendor Implementation Fees A consultant's price must be considered if you hire one. To minimize future troubles and costs, it is vital to identify the actions and timeframes they will accomplish. ERP consultants provide implementation services such as data migration, project management, and system customization. Some consultants charge extra for these services, so be careful to ask how their pricing operates. Maintenance Cost Your servers and machines should meet the vendor's minimal requirements. You may need to update your equipment to support the ERP deployment, which will affect your ROI calculations. Maintenance expenses should include IT labor, extra server expenditures, and other departmental charges. Also, the ERP vendor may charge an annual maintenance fee to upgrade to new technology. User Cost Training your employees on the new ERP system is critical to its efficiency. Training takes time and money. It will depend on how many employees need to be trained, how difficult the processes are to learn, and whether you need to engage extra trainers or managers to help speed up new production processes. The budget should never be exceeded; otherwise, the ROI will suffer. Final Word A manufacturing ERP system is an integral part of any modern manufacturing organization. It helps your business in multiple ways to accelerate operations and business processes. Always conduct a thorough analysis of why you are looking out for ERP solutions and how they will help your businesses in becoming more productive than it is now. The ROI for manufacturing ERP is calculated by comparing the anticipated cost of ERP to the expected benefits (direct and indirect cost savings) of installing the ERP system. ROI is computed by adding the predicted ERP returns and dividing by the ERP TCO (Total Cost of Ownership); the resulting quotient is the ERP ROI. FAQ What is ERP used for in production? Manufacturing ERP is a centralized approach to managing production and payroll activities. ERP improves operational efficiency by providing unprecedented visibility, coordination, and management across a company's many activities. What are the types of ERP? There are three main types of ERP systems, each with varying deployment models. ERP systems can be cloud-based, on-premises, or hybrid. How long does it take for an ERP investment to pay off? A typical project can take between 12 and 24 months to complete, depending on the scope and complexity of the work.

Read More
Manufacturing Technology

Selecting Quality Management Software: What to Expect in the ROI

Article | April 25, 2022

Deciding on the right quality management software might be difficult for any business due to its features and return on investment evaluation. However, given the requirement for quality improvements, it is critical for a quick return on investment from the software. In addition, effective quality management software can assist in developing a culture of constant improvement in a company's manufacturing operations. "Quality comes not from inspection, but from improvement of the production process." – W. Edwards Deming, Quality management software (QMS) has countless advantages, of which some are quantifiable, and others are more subjective. Quality management systems (QMS) are important because they can help manufacturers be proactive rather than reactive, leading to better overall quality. In this article, we've included several metrics you may use to keep tabs on your progress and understand better your return on investment on manufacturing quality management software. Directly Quantifiable Benefits (ROI) Lowered Defect Management Expenses Components that do not meet or exceed design criteria are wasted. Effective quality management software helps minimize failure rates, saving money. Quality data helps reduce scrap, rework, sorting, and processing costs. Manufacturing quality management software streamlines and modernizes complicated, often error-prone MRO procedures, which reduces maintenance costs and the risk of not complying with the law. Less Expensive Supplier Management Quality control software for manufacturing can be used to mitigate the costs associated with substandard supplier quality. Supplier performance, trends, and on-time delivery are all tracked in real-time. Managers can use supplier ratings to determine which suppliers are the most beneficial to the firm. This data is then used to minimize the risk and expense of working with suppliers and sub-tier suppliers. Higher Supplier Recovery Success Supplier recovery establishes accountability throughout the supply chain, thus mitigating overall risk. Within the quality management system, timely and reliable data on nonconformance suppliers is available, resulting in proactive payback or product replacement. Substandard supplier material can also recoup warranty return costs incurred due to substandard supplier material. Lowered IT Support & Costs Quality management software automates removing excessive applications, hence lowering IT expenses and increasing data consistency. Without additional programming, a best-in-class solution is easily customizable to suit requirements. In addition, having all of the important data in one place eliminates the need for manual data entry, improves data integrity, and saves a lot of time and money. Paperless Workplace A paperless shop floor increases efficiency by saving time spent preparing paper and forms. You save time preparing, distributing, and collecting work instructions, work orders, travelers, and quality data forms with quality management software. Real-time reporting helps managers make better judgments. Apart from saving time, electronic document management also allows administrators to regulate user access to sensitive data and handle document approval electronically. Long-term Financial Return Ensured Product Compliance and Reduced Risk Complex manufacturers must constantly adapt to changing norms. The software can handle quality and compliance issues across departments, process areas, and locations. In addition, the solution simplifies the procedure and improves the results. Better Decision-making with Better Operational Visibility Real-time historical data improves accuracy, efficiency, and quality. Enterprise quality management software can assist managers in discovering trends, repetition, and relative cost. In addition, actionable data helps respond to changing markets and client demands. Complete Traceability of Each Part, Subassembly, and Final Assembly Comprehensive quality management software creates, records, queries, and manages traceability requirements for compliance and quality. The system lets you keep an eye on quality through the product's life cycle to make sure it meets regulatory, quality, and customer requirements. Final Word Quality management software must be evaluated using quantifiable and long-term subjective returns to gain a realistic picture of a system's future performance. When an effective system is in place, employees can focus on high-value chores instead of managing documents or processes. Manufacturing businesses can gain a competitive edge by implementing quality management software for manufacturing. The best quality management software should pay for itself over time. FAQ What is quality control software testing? Quality control in software testing is a systematic set of techniques used to verify software product or service quality. The fundamental goal of quality control is to ensure that the software meets the actual requirements by testing and reviewing them. What are the three types of quality management? Each quality management system is divided into three stages: conceptualization, documentation, and implementation. What are the seven principles of quality management? Engagement of people, customer focus, leadership, process approach, improvement, evidence-based decision making, and relationship management are the seven principles of quality management.

Read More

Spotlight

Wirtz Manufacturing Company

Located in Port Huron, Michigan United States of America. Leaders in the Design and manufacturers of equipment for the lead acid battery industry. Our Sales staff and service technicians travel worldwide to sell and service our equipment, and train our customers. Company sells our products worldwide

Related News

Manufacturing Technology

MaxLinear Launches Product Design Kit for Active Electrical Cables Using Keystone PAM4 DSP

MaxLinear | February 02, 2024

MaxLinear, Inc. a leading provider of high-speed interconnect ICs enabling data center, metro, and wireless transport networks, announced the availability of a comprehensive product design kit (PDK) to optimize performance and accelerate the time to market for high-speed Active Electrical Cables (AEC) using MaxLinear’s 5nm PAM4 DSP, Keystone. The PDK is a cost-cutting and time-saving tool for cable manufacturers who want to quickly integrate Keystone into their active electrical cables. MaxLinear’s Keystone PAM4 DSP offers a significant power advantage in AEC applications, which is increasingly becoming a critical factor for hyperscale data centers. The use of 5nm CMOS technology enables designers and manufacturers to build high-speed cables that meet the need for low power, highly integrated, high performance interconnect solutions that will drive the next generation of hyperscale cloud networks. Manufacturers taking advantage of MaxLinear’s PDK to optimize cable designs using Keystone PAM4 DSP will gain a distinct advantage over competitor solutions when trying to maximize reach and minimize power consumption. The PDK makes Keystone easy to integrate with strong applications support, multiple tools to optimize and monitor performance, and reference designs (SW and HW) to accelerate integration. Sophisticated software allows for quick design optimization for the lowest possible power consumption and maximizing cable reach. Cable designers can constantly monitor performance, route signals from any port to any port, and take advantage of hitless firmware upgrades. “MaxLinear is focused on providing not only industry-leading interconnect technologies but also a comprehensive suite of tools to support our manufacturing and design partners,” said Drew Guckenberger, Vice President of High Speed Interconnect at MaxLinear. “Our development kit for our Keystone products provides them with a path to take products to market more quickly and more cost-effectively.” Active electrical cables (AECs) are revolutionizing data center connections. Unlike passive cables, they actively boost signals, allowing for longer distances (up to 7 meters for 400G), higher bandwidth, and thinner, lighter cables. This makes them ideal for high-speed applications like top-of-rack connections (connecting switches to servers within the same rack); direct digital control (enabling flexible interconnectivity within racks and across rows); and breakout solutions (splitting high-speed connections into multiple lower-speed channels). The high-speed interconnect market – which includes active optical cables, active electrical cables, direct attach copper cables, and others – is expected to grow to $17.1B by 2028, up from $10.7B in 2021 according to a market forecast report from The Insight Partners. The Keystone Family The Keystone 5nm DSP family caters to 400G and 800G applications, featuring a groundbreaking 106.25Gbps host side electrical I/O, aligning with the line side interface rate. Available variants support single-mode optics (EML and SiPh), multimode optics and Active Electrical Cables (AECs), offering comprehensive solutions with companion TIAs. Host side interfaces cover ethernet rates of 25G, 50G, and 100G per lane over C2M, MR, and LR host channels. The line side interfaces, tailored for 100G/λ DR, FR, and LR applications, also support these rates. These devices boast extensive DSP functionality, encompassing line-side transmitter DPD, TX FIR, receiver FFE, and DFE. With exceptional performance and signal integrity, these DSPs occupy a compact footprint (12mm x 13mm), ideal for next-gen module form-factors like QSFP-DD800 and OSFP800. Additionally, they are available as Known Good Die (KGD) for denser applications, such as OSFP-XD. About MaxLinear, Inc. MaxLinear, Inc. is a leading provider of radio frequency (RF), analog, digital, and mixed-signal integrated circuits for access and connectivity, wired and wireless infrastructure, and industrial and multimarket applications. MaxLinear is headquartered in Carlsbad, California. MaxLinear, the MaxLinear logo, any other MaxLinear trademarks are all property of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved.

Read More

Smart Factory

PsiQuantum, Mitsubishi UFJ Financial Group and Mitsubishi Chemical Announce Partnership to Design Energy-Efficient Materials on PsiQuantum’s

PsiQuantum | January 30, 2024

PsiQuantum and Mitsubishi UFJ Financial Group announced that they are beginning work with Mitsubishi Chemical Group on a joint project to simulate excited states of photochromic molecules which have widespread industrial and residential potential applications such as the development of smart windows, energy-efficient data storage, solar energy storage and solar cells, and other photoswitching use cases. Qlimate, a PsiQuantum-led initiative that includes MUFG as a partner, focuses on using fault-tolerant quantum computing to crack the most challenging computational problems and accelerate the development of scalable breakthroughs across climate technologies, including more energy-efficient materials. Mitsubishi UFJ Financial Group (MUFG) is committed to supporting the world’s transition to a sustainable future, and to encourage industry access to the most promising breakthrough technologies. By pioneering PsiQuantum’s Qlimate solutions with industry leader Mitsubishi Chemical, MUFG is at the forefront of quantum computing for sustainability. This joint project will determine whether high-accuracy estimates of excited state properties are feasible on early-generation fault-tolerant quantum computers, specifically focusing on diarylethenes used for energy-efficient photoswitching applications. The project will allow Mitsubishi Chemical to gain early insights into how and when fault-tolerant quantum computing can be deployed in support of critical, scalable, sustainable materials. Because predicting the optical properties of materials requires complex analysis of excited states, standard algorithmic techniques for simulating these molecules (such as the Density Functional Theory, or DFT) often produce qualitatively incorrect results. The project will bring together Mitsubishi Chemical’s deep experience of computational chemistry and PsiQuantum’s leading expertise in fault-tolerant quantum computing to push the boundaries of approaching the complex physics in these systems and pave the way to developing new, more powerful energy-efficient photonic materials. Philipp Ernst, Head of Solutions at PsiQuantum, said: “PsiQuantum has dedicated teams who identify, describe and solve complex problem sets with best-in-class quantum algorithms. These are designed specifically to run on fault-tolerant quantum computers and will tackle previously-impossible computational challenges. This partnership will leverage our team’s unique know-how and Mitsubishi Chemical’s expertise in photochromic materials. We are grateful for MUFG’s visionary support in our mission to deploy high-impact quantum computing solutions to fight climate change.” Suguru Azegami, Managing Director, Sustainable Business Division, MUFG said: “We are excited to partner with PsiQuantum and Mitsubishi Chemical on our journey to explore possibilities of quantum computing technologies to solve the imminent global challenge. PsiQuantum’s vision to develop the first utility scale quantum computer before the end of the decade has inspired us, which led our initiative to participate in the Qlimate partnership as the first and sole member from Japan. Mitsubishi Chemical is leading efforts to use the cutting-edge technology to develop next generation materials and we are honored to support the company as its long term financial partner.” Qi Gao, Senior Chief Scientist, Mitsubishi Chemical said: “We are pleased to be part of the partnership and are grateful for MUFG’s support. Mitsubishi Chemical’s over 40 years background in computational chemistry and PsiQuantum’s domain specific knowledge for quantum control is a great fit with the collaboration effort of improving calculation accuracy on quantum device. We hope the partnership will accelerate the innovation of revolutionizing computational studies in chemistry and materials science.” About PsiQuantum PsiQuantum is a private company, founded in 2015 and headquartered in Palo Alto, California. The company’s only mission is to build and deploy the world’s first useful, large-scale quantum computer. Many teams around the world today have demonstrated prototype quantum computing systems, but it is widely accepted that much larger systems are necessary in order to unlock transformational applications across drug discovery, climate technologies, finance, transportation, security & defense and beyond. PsiQuantum’s photonic approach enables rapid scaling via direct leverage of high-volume semiconductor manufacturing and cryogenic infrastructure. The company is partnered with the SLAC National Accelerator Laboratory at Stanford University and Sci-Tech Daresbury in the United Kingdom. About Mitsubishi UFJ Financial Group, Inc. (MUFG) Mitsubishi UFJ Financial Group, Inc. (MUFG) is one of the world’s leading financial groups. Headquartered in Tokyo and with over 360 years of history, MUFG has a global network with approximately 2,000 locations in more than 50 countries. The Group has about 160,000 employees and offers services including commercial banking, trust banking, securities, credit cards, consumer finance, asset management, and leasing. The Group aims to “be the world’s most trusted financial group” through close collaboration among our operating companies and flexibly respond to all of the financial needs of our customers, serving society, and fostering shared and sustainable growth for a better world. MUFG’s shares trade on the Tokyo, Nagoya, and New York stock exchanges. About the Mitsubishi Chemical Group Corporation Mitsubishi Chemical Group Corporation (TSE: 4188) is a specialty materials group with an unwavering commitment to lead with innovative solutions to achieve KAITEKI, the well-being of people and the planet. We bring deep expertise and material science leadership in core market segments such as mobility, digital, medical and food. In this way, we enable industry transformation, technology breakthroughs, and longer, more fruitful lives for us all. Together, around 70,000 employees worldwide provide advanced chemistry-based solutions to deliver the core elements of our slogan — “Science. Value. Life.”

Read More

Additive Manufacturing

Teledyne Relays Unveils Innovative Multi-Function Timer Series

Teledyne Relays, Inc. | January 29, 2024

Teledyne Relays, a leading provider of cutting-edge relay solutions, introduces its new Multi-Function Timer product series, showcasing the company's commitment to delivering advanced, reliable, and versatile solutions for the industrial automation sector. Teledyne Relays Multi-Function Timer MFT series is a state-of-the-art solution designed for a wide variety of applications that demand precise timing control. The user-friendly design features three potentiometers for easy selection of timing functions and ranges, while the LEDs provide at-a-glance feedback of timing and relay status. The MFT series also features 7 selectable timing functions for a wide variety of applications Timing ranges from 0.1 seconds up to 100 hours Compact 17.5mm housing preserves valuable panel space Supply Voltages: 24VDC & 24-240VAC OR 12-240VAC/DC 5A SPDT output relay Engineered with the needs of electrical engineers, panel builders, and automation engineers in mind, these timers find application in various industries, including but not limited to Industrial Automation Manufacturing Process Control Systems HVAC and Refrigeration Agriculture and Irrigation Power Distribution “With the new Multi-Function Timer series, Teledyne Relays continues to lead in providing reliable and versatile solutions for industrial automation, ensuring precise timing control,” said Michael Palakian, Vice President of Global Sales and Marketing at Teledyne Relays. The Multi-Function Timer series from Teledyne Relays ensures precise timing control, offering unparalleled reliability across diverse applications and is available for ordering from Teledyne Relays or an authorized distributor. About Teledyne Relays Teledyne Relays is a world leader in high-performance coaxial switches, electromechanical, and solid-state relays, offering a wide range of solutions for various applications in the aerospace and defense, telecommunications, test and measurement, and industrial markets. With over 60 years of experience, Teledyne Relay has established a reputation for quality, reliability, and customer service excellence. About Teledyne Defense Electronics Serving Defense, Space and Commercial sectors worldwide, Teledyne Defense Electronics offers a comprehensive portfolio of highly engineered solutions that meet your most demanding requirements in the harshest environments. Manufacturing both custom and off-the-shelf product offerings, our diverse product lines meet emerging needs for key applications for avionics, energetics, electronic warfare, missiles, radar, satcom, space and test and measurement.

Read More

Manufacturing Technology

MaxLinear Launches Product Design Kit for Active Electrical Cables Using Keystone PAM4 DSP

MaxLinear | February 02, 2024

MaxLinear, Inc. a leading provider of high-speed interconnect ICs enabling data center, metro, and wireless transport networks, announced the availability of a comprehensive product design kit (PDK) to optimize performance and accelerate the time to market for high-speed Active Electrical Cables (AEC) using MaxLinear’s 5nm PAM4 DSP, Keystone. The PDK is a cost-cutting and time-saving tool for cable manufacturers who want to quickly integrate Keystone into their active electrical cables. MaxLinear’s Keystone PAM4 DSP offers a significant power advantage in AEC applications, which is increasingly becoming a critical factor for hyperscale data centers. The use of 5nm CMOS technology enables designers and manufacturers to build high-speed cables that meet the need for low power, highly integrated, high performance interconnect solutions that will drive the next generation of hyperscale cloud networks. Manufacturers taking advantage of MaxLinear’s PDK to optimize cable designs using Keystone PAM4 DSP will gain a distinct advantage over competitor solutions when trying to maximize reach and minimize power consumption. The PDK makes Keystone easy to integrate with strong applications support, multiple tools to optimize and monitor performance, and reference designs (SW and HW) to accelerate integration. Sophisticated software allows for quick design optimization for the lowest possible power consumption and maximizing cable reach. Cable designers can constantly monitor performance, route signals from any port to any port, and take advantage of hitless firmware upgrades. “MaxLinear is focused on providing not only industry-leading interconnect technologies but also a comprehensive suite of tools to support our manufacturing and design partners,” said Drew Guckenberger, Vice President of High Speed Interconnect at MaxLinear. “Our development kit for our Keystone products provides them with a path to take products to market more quickly and more cost-effectively.” Active electrical cables (AECs) are revolutionizing data center connections. Unlike passive cables, they actively boost signals, allowing for longer distances (up to 7 meters for 400G), higher bandwidth, and thinner, lighter cables. This makes them ideal for high-speed applications like top-of-rack connections (connecting switches to servers within the same rack); direct digital control (enabling flexible interconnectivity within racks and across rows); and breakout solutions (splitting high-speed connections into multiple lower-speed channels). The high-speed interconnect market – which includes active optical cables, active electrical cables, direct attach copper cables, and others – is expected to grow to $17.1B by 2028, up from $10.7B in 2021 according to a market forecast report from The Insight Partners. The Keystone Family The Keystone 5nm DSP family caters to 400G and 800G applications, featuring a groundbreaking 106.25Gbps host side electrical I/O, aligning with the line side interface rate. Available variants support single-mode optics (EML and SiPh), multimode optics and Active Electrical Cables (AECs), offering comprehensive solutions with companion TIAs. Host side interfaces cover ethernet rates of 25G, 50G, and 100G per lane over C2M, MR, and LR host channels. The line side interfaces, tailored for 100G/λ DR, FR, and LR applications, also support these rates. These devices boast extensive DSP functionality, encompassing line-side transmitter DPD, TX FIR, receiver FFE, and DFE. With exceptional performance and signal integrity, these DSPs occupy a compact footprint (12mm x 13mm), ideal for next-gen module form-factors like QSFP-DD800 and OSFP800. Additionally, they are available as Known Good Die (KGD) for denser applications, such as OSFP-XD. About MaxLinear, Inc. MaxLinear, Inc. is a leading provider of radio frequency (RF), analog, digital, and mixed-signal integrated circuits for access and connectivity, wired and wireless infrastructure, and industrial and multimarket applications. MaxLinear is headquartered in Carlsbad, California. MaxLinear, the MaxLinear logo, any other MaxLinear trademarks are all property of MaxLinear, Inc. or one of MaxLinear's subsidiaries in the U.S.A. and other countries. All rights reserved.

Read More

Smart Factory

PsiQuantum, Mitsubishi UFJ Financial Group and Mitsubishi Chemical Announce Partnership to Design Energy-Efficient Materials on PsiQuantum’s

PsiQuantum | January 30, 2024

PsiQuantum and Mitsubishi UFJ Financial Group announced that they are beginning work with Mitsubishi Chemical Group on a joint project to simulate excited states of photochromic molecules which have widespread industrial and residential potential applications such as the development of smart windows, energy-efficient data storage, solar energy storage and solar cells, and other photoswitching use cases. Qlimate, a PsiQuantum-led initiative that includes MUFG as a partner, focuses on using fault-tolerant quantum computing to crack the most challenging computational problems and accelerate the development of scalable breakthroughs across climate technologies, including more energy-efficient materials. Mitsubishi UFJ Financial Group (MUFG) is committed to supporting the world’s transition to a sustainable future, and to encourage industry access to the most promising breakthrough technologies. By pioneering PsiQuantum’s Qlimate solutions with industry leader Mitsubishi Chemical, MUFG is at the forefront of quantum computing for sustainability. This joint project will determine whether high-accuracy estimates of excited state properties are feasible on early-generation fault-tolerant quantum computers, specifically focusing on diarylethenes used for energy-efficient photoswitching applications. The project will allow Mitsubishi Chemical to gain early insights into how and when fault-tolerant quantum computing can be deployed in support of critical, scalable, sustainable materials. Because predicting the optical properties of materials requires complex analysis of excited states, standard algorithmic techniques for simulating these molecules (such as the Density Functional Theory, or DFT) often produce qualitatively incorrect results. The project will bring together Mitsubishi Chemical’s deep experience of computational chemistry and PsiQuantum’s leading expertise in fault-tolerant quantum computing to push the boundaries of approaching the complex physics in these systems and pave the way to developing new, more powerful energy-efficient photonic materials. Philipp Ernst, Head of Solutions at PsiQuantum, said: “PsiQuantum has dedicated teams who identify, describe and solve complex problem sets with best-in-class quantum algorithms. These are designed specifically to run on fault-tolerant quantum computers and will tackle previously-impossible computational challenges. This partnership will leverage our team’s unique know-how and Mitsubishi Chemical’s expertise in photochromic materials. We are grateful for MUFG’s visionary support in our mission to deploy high-impact quantum computing solutions to fight climate change.” Suguru Azegami, Managing Director, Sustainable Business Division, MUFG said: “We are excited to partner with PsiQuantum and Mitsubishi Chemical on our journey to explore possibilities of quantum computing technologies to solve the imminent global challenge. PsiQuantum’s vision to develop the first utility scale quantum computer before the end of the decade has inspired us, which led our initiative to participate in the Qlimate partnership as the first and sole member from Japan. Mitsubishi Chemical is leading efforts to use the cutting-edge technology to develop next generation materials and we are honored to support the company as its long term financial partner.” Qi Gao, Senior Chief Scientist, Mitsubishi Chemical said: “We are pleased to be part of the partnership and are grateful for MUFG’s support. Mitsubishi Chemical’s over 40 years background in computational chemistry and PsiQuantum’s domain specific knowledge for quantum control is a great fit with the collaboration effort of improving calculation accuracy on quantum device. We hope the partnership will accelerate the innovation of revolutionizing computational studies in chemistry and materials science.” About PsiQuantum PsiQuantum is a private company, founded in 2015 and headquartered in Palo Alto, California. The company’s only mission is to build and deploy the world’s first useful, large-scale quantum computer. Many teams around the world today have demonstrated prototype quantum computing systems, but it is widely accepted that much larger systems are necessary in order to unlock transformational applications across drug discovery, climate technologies, finance, transportation, security & defense and beyond. PsiQuantum’s photonic approach enables rapid scaling via direct leverage of high-volume semiconductor manufacturing and cryogenic infrastructure. The company is partnered with the SLAC National Accelerator Laboratory at Stanford University and Sci-Tech Daresbury in the United Kingdom. About Mitsubishi UFJ Financial Group, Inc. (MUFG) Mitsubishi UFJ Financial Group, Inc. (MUFG) is one of the world’s leading financial groups. Headquartered in Tokyo and with over 360 years of history, MUFG has a global network with approximately 2,000 locations in more than 50 countries. The Group has about 160,000 employees and offers services including commercial banking, trust banking, securities, credit cards, consumer finance, asset management, and leasing. The Group aims to “be the world’s most trusted financial group” through close collaboration among our operating companies and flexibly respond to all of the financial needs of our customers, serving society, and fostering shared and sustainable growth for a better world. MUFG’s shares trade on the Tokyo, Nagoya, and New York stock exchanges. About the Mitsubishi Chemical Group Corporation Mitsubishi Chemical Group Corporation (TSE: 4188) is a specialty materials group with an unwavering commitment to lead with innovative solutions to achieve KAITEKI, the well-being of people and the planet. We bring deep expertise and material science leadership in core market segments such as mobility, digital, medical and food. In this way, we enable industry transformation, technology breakthroughs, and longer, more fruitful lives for us all. Together, around 70,000 employees worldwide provide advanced chemistry-based solutions to deliver the core elements of our slogan — “Science. Value. Life.”

Read More

Additive Manufacturing

Teledyne Relays Unveils Innovative Multi-Function Timer Series

Teledyne Relays, Inc. | January 29, 2024

Teledyne Relays, a leading provider of cutting-edge relay solutions, introduces its new Multi-Function Timer product series, showcasing the company's commitment to delivering advanced, reliable, and versatile solutions for the industrial automation sector. Teledyne Relays Multi-Function Timer MFT series is a state-of-the-art solution designed for a wide variety of applications that demand precise timing control. The user-friendly design features three potentiometers for easy selection of timing functions and ranges, while the LEDs provide at-a-glance feedback of timing and relay status. The MFT series also features 7 selectable timing functions for a wide variety of applications Timing ranges from 0.1 seconds up to 100 hours Compact 17.5mm housing preserves valuable panel space Supply Voltages: 24VDC & 24-240VAC OR 12-240VAC/DC 5A SPDT output relay Engineered with the needs of electrical engineers, panel builders, and automation engineers in mind, these timers find application in various industries, including but not limited to Industrial Automation Manufacturing Process Control Systems HVAC and Refrigeration Agriculture and Irrigation Power Distribution “With the new Multi-Function Timer series, Teledyne Relays continues to lead in providing reliable and versatile solutions for industrial automation, ensuring precise timing control,” said Michael Palakian, Vice President of Global Sales and Marketing at Teledyne Relays. The Multi-Function Timer series from Teledyne Relays ensures precise timing control, offering unparalleled reliability across diverse applications and is available for ordering from Teledyne Relays or an authorized distributor. About Teledyne Relays Teledyne Relays is a world leader in high-performance coaxial switches, electromechanical, and solid-state relays, offering a wide range of solutions for various applications in the aerospace and defense, telecommunications, test and measurement, and industrial markets. With over 60 years of experience, Teledyne Relay has established a reputation for quality, reliability, and customer service excellence. About Teledyne Defense Electronics Serving Defense, Space and Commercial sectors worldwide, Teledyne Defense Electronics offers a comprehensive portfolio of highly engineered solutions that meet your most demanding requirements in the harshest environments. Manufacturing both custom and off-the-shelf product offerings, our diverse product lines meet emerging needs for key applications for avionics, energetics, electronic warfare, missiles, radar, satcom, space and test and measurement.

Read More

Events