Building a Smart Factory is Possible Using Machine Learning

Bhagyashri Kambale | December 07, 2021
MACHINE-LEARNING-MIN
Machine learning in manufacturing is becoming more widespread, with businesses like GE, Siemens, Intel, Bosch, NVIDIA, and Microsoft all investing heavily in machine learning-based ways to enhance manufacturing.

Machine learning is predicted to expand from $1 billion in 2016 to USD 9 billion by 2022at a compound annual growth rate (CAGR) of 44% throughout the forecast period, according to Markets & Markets.

The technology is being utilized to cut labor costs, achieve better transition times, and increase manufacturing speed.

“I advocate business leaders get to know more about what AI can do and then leverage AI in proofs of concept.”

– Michael Walton, Director and Industry Executive, Microsoft speaking with Media 7

Machine learning can help enhance manufacturing processes at the industrial level. This can be achieved by assessing current manufacturing models and identifying flaws and pain factors. Businesses can rapidly address any difficulties to keep the manufacturing pipeline running smoothly.


Let us explore how machine learning is transforming manufacturing operations.

How Machine Learning Is Transforming Manufacturing Operations

“The greatest benefit of machine learning may ultimately be not what the machines learn but what we learn by teaching them.”

- Pedro Domingos

Machine learning in manufacturing is revolutionizing manufacturing operations and making them more advanced and result-oriented, so let's have a look at how this is unfolding.


Allows for Predictive Maintenance

Machine learning provides predictive maintenance by forecasting equipment breakdowns and eliminating wasteful downtime. Manufacturers spend far too much time correcting problems instead of planning upkeep. In addition to enhancing asset dependability and product quality, machine learning systems can forecast equipment breakdown with 92% accuracy. Machine learning and predictive analytics increased overall equipment efficiency from 65% to 85%.


Increases Product Inspection and Quality Control

Machine learning is also utilized for product inspection. Automated inspection and supervision using ML-based computer vision algorithms can discriminate between excellent and bad products. These algorithms simply need excellent samples to train; therefore a fault library is not required. However, an algorithm that compares samples to the most common errors can be built. Machine learning reduces visual quality control costs in manufacturing. Forbe's says AI-powered quality testing can boost detection rates by up to 80%.


Logistics-related Tasks Are Automated

To run a production line, industrial companies need considerable logistics skills. The use of machine learning-based solutions can improve logistics efficiency and save expenses. Manual, time-consuming operations like logistics and production-related documentation cost the average US business $171,340 annually. It saves thousands of manual working hours every year to automate these everyday procedures. Using Deep Mind AI, Google was able to lower its data center cooling bill by 40%.


Creates More Business Opportunities

Machine learning is frequently used in the production process. Substantial data analysis is required to create new items or improve existing products. Collection and analysis of huge amounts of product data can help find hidden defects and new business opportunities. This can help improve existing product designs and provide new revenue streams for the company. With machine learning, companies can reduce product development risks by making smarter decisions with better insights.


Protects Company’s Digital Assets

On-premise and cloud-based machine learning systems require networks, data, and technological platforms to function. Machine learning can help secure these systems and data by restricting access to vital digital platforms and information. Humans’ access sensitive data, choose applications, and connect to it using machine learning. This can help secure digital assets by immediately recognizing irregularities and taking appropriate action.


Harley Davidson's Sales Climbed by 40% Using Albert – The ML & AI-Powered Robot

Today, traditional marketing is harder to break through. It's easy to see why Albert (an AI-powered robot) would be a good fit for Harley Davidson NYC. Thanks to machine learning and artificial intelligence, robots are producing news stories, working in hotels, controlling traffic, and even running McDonald's.

Albert works well with social media and email marketing. It analyzed which customers are more likely to convert and modifies the personal creative copies on its own for the next process.

Harley-Davidson is the only company to employ Albert in its business. The company evaluated customer data to find prior consumers who made purchases and spent more time browsing the website than normal. Albert used this data to categorize customers and scale up test campaigns.

Using Albert, Harley-Davidson's sales climbed by 40% and leads increased 2,930%, with half coming from high-converting ‘lookalikes' detected by AI and machine learning.


Final Words

The groundbreaking benefits of machine learning are the pillars of machine learning applications in manufacturing. Machine learning in manufacturing helps enhance productivity without compromising quality. According to Forbes, Amazon has automated warehouse logistics picking and packing using a machine learning system. With Kiva's help, Amazon's typical ‘click to ship' time dropped from 60-75 minutes to 15 minutes. So, industry leaders are seeing fantastic outcomes, and machine learning in manufacturing is the future.


FAQ


How is machine learning used in manufacturing?

Machine learning is used in manufacturing to improve product quality and uncover new efficiencies. It unquestionably aids in the identification and removal of bottlenecks in the manufacturing process.


Which two forms of machine learning are there?

Machine learning is divided into two forms: supervised and unsupervised. In supervised machine learning, a machine learning algorithm is trained using data that has been labeled. Unsupervised ML has the advantage of working with unlabeled data.


What is a machine learning model?

A machine learning model is a file that can recognize patterns. In order to learn from a set of data, you must first train a model using an algorithm.

Spotlight

DeWys Manufacturing

DeWys Manufacturing, Inc., headquartered in West Michigan, has a thirty-five year tradition of providing customers with outstanding pre-sale engineering, manufacturing, and post-sales support. DeWys Manufacturing, Inc. manufactures your products in an efficient, modern facility with state-of-the-art manufacturing and testing equipment.

OTHER ARTICLES

Five Lean Manufacturing Principles to Empower Your Manufacturing Business

Article | December 16, 2021

Lean manufacturing is an operational approach used to create value. Businesses adopt lean manufacturing to improve productivity, reduce waste, increase customer value, and employee satisfaction. Many businesses are accelerating their adoption of lean principles and practices due to the emergence of the industry 4.0 transformation. As a result, companies such as Caterpillar, Intel, Textron, Parker Hannifin, and John Deere are all reaping the benefits of lean manufacturing. So, where did the idea of "lean manufacturing" first originate? In this article, you'll learn about the origins of lean manufacturing and its key principles. The Origins of Lean Manufacturing The principles of lean manufacturing were developed in Japan in the mid-20th century. Toyota, a famous Japanese automaker, experienced major delivery issues at the time. Its production chains were excessively long; thus it couldn't supply enough products on time. As a result, Toyota needed a new Performance measurement system. The company's managers identified a solution. They created a new project management method called the Toyota production system. Its basic idea was to improve product distribution by reducing waste. It was a good concept. It helped the company shorten manufacturing chains and deliver products faster. Toyota's production method created a simple and effective waste definition. Any step that did not improve the end product's functionality was called a waste. Later, other manufacturing industries adopted the system. It was renamed as lean manufacturing. It's now a global phenomenon and is used by large and small businesses worldwide. When should you implement the Lean Manufacturing Method in your business? Lean is a waste-reduction methodology, approach, and a lifestyle. While it is commonly used in manufacturing, lean techniques are applied to reduce waste while keeping high quality in any business. Waste reduction of 80% plus Reduced production expenses by 50% Decreased inventories by 80-90% Producing quality items is 90% less expensive. Workforce productivity improved by 50% If you want your business to get the above benefits, you need to adopt lean manufacturing principles. Five lean Manufacturing Principles Lean manufacturing benefits businesses in multiple ways, and this lean lifestyle has the potential to empower any organization and increase its market competitiveness. So, let us observe the five fundamental principles of lean manufacturing. Value For the first principle of defining customer value, it is vital to understand what value is. For customers, value comes from what they're willing to pay for. The customer's actual or hidden demands must be discovered. Customers are not aware of what they want or cannot express it. When it comes to new items or technologies, this is a regular occurrence. Assume nothing; ask about the pain points being experienced and then craft a unique value proposition. Never force a solution into a problem that does not exist.” – Thomas R. Cutler, President & CEO at TR Cutler, Inc. For example, you can use various methods to find out what customers value, such as surveys and demographic information. With these qualitative and quantitative methodologies, you may learn more about your clients' needs, their expectations, and their budgets. Value-Stream Identifying and mapping the value stream is the second lean principle. By starting with the consumer’s perceived value, all activities that contribute to that value may be identified. Waste is anything that does not benefit the client in any way. It can be divided into two categories: non-value-added and unnecessary waste. The unnecessary waste should be removed, while the non-value-added should be minimized. You can ensure that clients get exactly what they want while minimizing the cost of creating that product or service by removing unnecessary processes or steps. Flow The next operations must proceed smoothly and without interruption or delays after removing wastes from the value stream. Value-adding activities can be improved by breaking down tasks, reorganizing the manufacturing process, distributing the workload, and educating personnel to be flexible and multi-skilled. Pull The fourth lean principle requires a pull-based manufacturing system. Traditional production systems use a push system, which starts with purchasing supplies and continues manufacturing even when no orders are placed. While push systems are simple to set up, they can result in vast inventories of work-in-progress (WIP). On the other hand, a pull method pulls a customer's order from delivery, causing new items to be made and additional materials to be acquired. Kanban, one of the lean manufacturing tools, can help organizations develop a pull system to control material flow in a production system. An efficient pull system maximizes available space, reduces inventory, eliminates over-and under-production, and eliminates errors caused by too much WIP. Perfection While completing Steps 1-4 is a great start, the fifth and possibly most critical step is incorporating lean thinking and process improvement into your organizational culture. As benefits accumulate, it is vital to remember that lean is not a static system that requires continuous effort and awareness to perfect. Each employee should get included in the lean implementation process. Lean experts sometimes state that a process is not truly lean until it has undergone at least a half-dozen value-stream mapping cycles. How Nike Demonstrated the Benefits of Lean Principles Nike, the world-famous shoe and clothing powerhouse, has embraced lean manufacturing principles and practices. Nike experienced less waste and increased consumer value, as did other businesses. It also shared some unexpected benefits. It is proven that lean manufacturing can minimize terrible labor practices at a company's overseas manufacturing unit by up to 15%. This result was mostly due to implementing the lean manufacturing practice of valuing the workers more than earlier routine labor practices. It provided greater significance to an employee and, as a result, greater significance to the organization as a whole. Final Words Implementing lean manufacturing principles is a good way to run any organization. Businesses that build their operations on the two pillars of lean manufacturing, constant improvement, and personnel respect, are well on their way to becoming a successful and productive organizations in the modern era. To become a lean company, an organization must fully grasp the benefits and added value that it may get by adopting lean manufacturing principles. FAQ What is Five S's of lean manufacturing? The 5S of lean manufacturing are Sort, Set in Order, Shine, Standardize, and Sustain, and they give a framework for organizing, cleaning, developing, and maintaining a productive work environment. What are the two pillars of lean manufacturing? Lean, as modeled on the Toyota Way values, has two pillars, first is ‘Continuous Improvement’ and second is ‘Respect for People’. Why are lean principles beneficial for any business? Lean manufacturing is a business strategy that has proven to be highly successful since it can help you decrease costs, remove waste, enhance production, maintain excellent quality, and thus increase business profit significantly.

Read More

What are the Risks that Manufacturing Face in the Current Times?

Article | December 30, 2021

Risk management in manufacturing has always been a top priority for manufacturers to avoid any unfortunate incidents. As a result, it is possible to create a more secure work environment for employees by conducting risk assessments and implementing remedies. “If you don’t invest in risk management, it doesn’t matter what business you’re in, it’s a risky business.” – Gary Cohn, an American Business Leader. As of 2019, the worldwide risk management market was valued at $7.39 billion, and it is expected to rise at a CAGR of 18.7% from 2020 to 2027, according to allied market research. Why is Risk Assessment Critical in Manufacturing? The manufacturing industry must have a credible risk assessment and management plan to defend itself from any breaches. Risk assessment helps firms understand the dangers they face and their implications if their systems are compromised. Hence, risk assessment is very critical in the manufacturing industry. Five Risk Assessment Principles Identify hazards/risks - Employers must examine their workers' health and safety risks. Therefore, an organization must regularly inspect its employee’s physical, mental, chemical, and biological threats. Identify who may be hurt and in what way – Identifying the personnel both full-time and part-time at-risk. Employers must also examine threats to agency and contract personnel, visitors, clients, and other visitors. Assess the risks and act accordingly - Employers must assess the likelihood of each danger causing injury. This will evaluate and lower the chance at the working space. Even with all safeguards, there is always some danger. Therefore, employers must assess if danger is still high, medium, or low risk. Get the Risks Documented - Employers with five or more employees must record the critical findings of the risk assessment in writing. In addition, register any risks identified in the risk assessment and actions to minimize or eliminate risk. This document confirms the evaluation and is used to examine working practices afterward. The risk assessment is a draft. It should be readable. It shouldn't be hidden away. The risk assessment must account for changes in working techniques, new machinery, or higher work objectives. 5 Manufacturing Risks to Consider in 2022 Accidents at Work Even if official safety policies and programs are designed, followed, and enhanced, manufacturers may endure workplace accidents and injuries. Risk assessment for workplace accidents assists in mitigating the negative impact on both employees and the organization. Environmental Mishaps Manufacturers have distinct issues regarding fuel handling and hazardous waste disposal in facilities. Sudden leaks or spills may be extremely costly to clean up and result in fines from state and federal agencies. Risk assessments for such plant accidents assist businesses in mitigating financial losses. Equipment Breakdowns Essential machinery throughout the production process might fail at any time, incurring significant repair or replacement costs. Therefore, it's critical to recognize that business property insurance may not cover mechanical issues. Risk assessment and prepayment solutions protect against equipment failures without interfering with typical company operations. Supply Chain Disruption Dependence on your supply chain may result in unintended consequences that are beyond your control. For example, if you experience downtime on the manufacturing line due to a supplier's failure to supply materials or parts, you risk losing revenue and profitability. If a disturbance to your supply chain poses a hazard, risk management can assist you in managing it more effectively by quickly identifying the risk and providing a suitable response. Operation Temporarily Suspended Depending on the severity of the weather event, a factory might be severely damaged or perhaps utterly wrecked. While major repairs or rebuilding are being undertaken, recouping lost income might be vital to the business's future profitability. Risk assessment in this area enables your organization to budget for overhead expenditures such as rent, payroll, and tax responsibilities during the period of suspension of operations. Final Words Risk management is critical in manufacturing because it enables manufacturers to comprehend and anticipate scenarios and create a well-planned response that avoids unnecessary overhead costs or delays in delivering the production cycle's final result. Manufacturing risks are undoubtedly not limited to the risks listed above and may vary according to the nature of the business and regional environmental conditions. Therefore, create a well-defined strategy to overcome threats in your business and be productive at all times. FAQ How are manufacturing business risks classified? In most cases, the business risk may be categorized into four types: strategic risk, regulatory compliance risks, operational compliance risks, and reputational risks. Why should a manufacturer conduct a risk assessment? Every manufacturing employment has risks for injury or illness. But risk evaluations can significantly minimize workplace injuries and illnesses. In addition, they assist companies in discovering strategies to reduce health and safety risks and enhance knowledge about dangers.

Read More

How Manufacturing Digitalization Benefits Businesses in 2022

Article | December 14, 2021

The manufacturing industry has evolved to new heights of innovation, productivity, and excellence with digital transformation. Manufacturing digitalization has made operational procedures more skilled, accurate, and time-savvy. “Many companies simply are not willing to change or think they are done once they make a change. But the truth is technology; consumer demands, the way we work, human needs and much more are constantly changing.” Michael Walton, Director, Industry Executive (Manufacturing) at Microsoft With a CAGR of 19.48 percent between 2021 and 2026, the digital transformation in the manufacturing market is expected to reach USD 263.93 billion by 2026. Manufacturing plants adopt digital technology to improve, automate, and modernize processes as part of Industry 4.0. So, what are the key benefits of digitalization for manufacturers? This article will elaborate on the top five benefits of digital manufacturing transformation. How to Define Digital Manufacturing? Manufacturing digital transformation involves integrating digital technologies into processes and products to improve manufacturing efficiency and quality. Manufacturing's digital transformation aims to increase operational efficiency and reduce expenses. The digital transformation techniques ensure product quality. It also makes work more efficient, safe, and stress-free. What Is Included in Manufacturing Digitization (Industry 4.0)? Industry 4.0 is the digitalization of manufacturing. Cyber-physical systems, IoT, and cloud computing are current trends in manufacturing automation and data exchange. Connected devices, cloud computing power, and the modern emphasis of lean, efficient operations enable Industry 4.0 to construct advanced and innovative smart factories. Industry 4.0 includes design, sales, inventories, scheduling, quality, engineering, customer and field service. Five Benefits of Digital Transformation in Manufacturing Manufacturing organizations can benefit from digitalization in a variety of ways. It can help make the work more efficient, decentralized, and secure. It further creates new business opportunities and attracts new talent to the industry. Additionally, integrating products into a digital ecosystem increases their value and appeal. Let’s dig deeper into each of the five key benefits. Reduces Costs Technology is an invaluable companion in reducing the manufacturing company's expenses in the future. The incorporation of digital technology results in the transformation of procedures and the digitization of documents, resulting in overall process optimization. Therefore, a reduction in labor costs might be expected as a result of the elimination of unnecessary expenditures. Additionally, digitization enables businesses to assess and estimate expenses considerably more precisely, ensuring that budgets stay on track. Additionally, it eliminates andsubstitutes inefficient jobs within processes, significantly increasing their efficiency. This efficiency is translated into time savings, which results in a substantially more cost-effective manufacturing process. Decentralized Production Manufacturing digital transformation allows organizations to supervise manufacturing remotely, allowing production to continue uninterrupted. In rare cases like Covid-19, digitalized businesses have not had to cease or even slow down production. These systems can work without interruptions for much longer than any worker. Digitalization also boosts methodology flexibility and reactivity. For example, if a production plant has a problem, an automatic alert is generated, and the issue is resolved regardless of the day, time, or presence. Improved Operational Efficiency Smart product connectivity allows devices to connect and communicate with each other (M2M). This connectivity enables decentralized decision-making. Many duties no longer require an employee to be physically present. New manufacturing and production models minimize boring, risky activities while increasing accuracy, efficiency, and responsiveness. Transforming businesses through digital means making better decisions based on real-time data. Training, changes, and repairs are no longer issues due to reduced frequency and automation. New Business Opportunities New digital technologies enable the manufacture of previously unviable products and services, generating new revenue streams. Also, new services (innovation or reorientation) are launched considerably faster. Companies may utilize big data and AI to experiment, anticipate trends, and predict about new advancements. These technologies can help organizations become more eco-friendly and create products that are less detrimental to our environment. Attracts New Talent Professionals with fundamental talents in this complicated and disruptive environment are drawn to digitalizedorganizations that are up-to-date with trends and processes. Also, if the change is managed well, it will lead to higher profitability, increasing employee satisfaction. Human motivation, along with excellent digital technologies, will reflect in the company's production and profitability. Dusseldorf@Germany: The Deloitte Digital Factory The digital factory in Dusseldorf provides a flexible setting for innovative workshops and training, bringing together the old and new worlds of supply chain and industrial operations to provide a seamless experience. Specific use case examples, as well as the digital solutions sector, will motivate and encourage businesses to get on their digital transformation journeys, making use of the most up-to-date technologies in the process. Final Words Manufacturing digitalization has a lot to offer the industry, and many manufacturers are capitalizing on this new phase of the industrial revolution by incorporating cutting-edge technologies into manufacturing and business operations. As said previously, the benefits of digital transformation in the manufacturing business are increasing the importance of digitalization in the industry. Transform your traditional manufacturing operating processes with these new manufacturing trends and observe the results that other benefitting manufacturing businesses have achieved. FAQ Why is digitalization vital in manufacturing? Manufacturing process digitization improves overall business performance. But the results are seen across the factory. Digital transformation improves working conditions for employees and streamlines daily operations. How are digitization and digitalization different? Digitalization is a transformation of data and processes. Digitalization is the use of digital technologies to collect data, identify patterns, and make better business decisions. How digital technologies are applied in manufacturing? Digital manufacturing technologies enable the integration of systems and processes across all stages of production, from design to production and beyond.

Read More

Microfinancing in Uganda Works with Lean Manufacturing Precision

Article | November 23, 2021

Having recently returned from Uganda, had the pleasure of being introduced by Bernard Munyanziza of Nziza Hospitality to Gilbert Atuhire. He is the Managing Director at Value Addition Microfinance Ltd. which provides micro loans to producers and manufacturers. Atuhire is an attorney by training, however his ability to articulate the core values of Lean Six Sigma and continuous process improvement were abundantly clear. The Kampala, Uganda offices are located on Parliamentary Avenue and Dewinton Rise. This central location allows direct access to industrial projects.

Read More

Spotlight

DeWys Manufacturing

DeWys Manufacturing, Inc., headquartered in West Michigan, has a thirty-five year tradition of providing customers with outstanding pre-sale engineering, manufacturing, and post-sales support. DeWys Manufacturing, Inc. manufactures your products in an efficient, modern facility with state-of-the-art manufacturing and testing equipment.

Events