AI for Manufacturing: Leveraging ML to Prepare for Change and Uncertainty

COLLEEN MCNAMARA| April 15, 2020
AI FOR MANUFACTURING: LEVERAGING ML TO PREPARE FOR CHANGE AND UNCERTAINTY
In the midst of the rapid lifestyle changes incurred by COVID-19, consumer behaviors have shifted considerably: grocery and variety stores are experiencing consistent spikes in consumer demand, while other brick-and-mortar retailers are experiencing dwindling sales and a spike in traffic to their ecommerce sites. Undoubtedly, this reality significantly impacts manufacturers who, by and large, are worried about what COVID-19 will mean for their organizations in the short to medium terms. In fact, PwC has reported that 80% of manufacturing leaders expect to see a negative financial impact on their business due to the pandemic.

Spotlight

Sage Automotive Interiors

Sage Automotive Interiors is a leading global supplier of specialty-designed, high-performance technical textiles for the automotive industry. With offices and manufacturing facilities in the U.S., Europe, Japan, China, Brazil, and Korea, Sage has a vision to be the market leader in design, engineering and technical capability supported by world- class manufacturing. Our core strengths include consumer research, sustainability and innovative problem solving for the OEM.

OTHER ARTICLES

Advanced Manufacturing: Be Competitive in 2022

Article | November 1, 2021

Manufacturing processes will undergo significant transformation in 2022 as a result of advanced manufacturing technology. The changing manufacturing industry is full of digitization to improve processes, products, productivity, and business revenue. Manufacturers must realize the advantages of advanced manufacturing and learn to enhance their production processes to increase their manufacturing plant's productivity. Once you understand the heart of your business and where to integrate technology, you're halfway to success. The manufacturing industry's top professionals have also recognized the technology shift and are supporting upskilling in the manufacturing business. Mr. Matt Mong has said in his interview with Media7, “Once you start to look at yourself in the right way and realize that projects are at the core of your business, it is easy to see how you should use technology to support your business.” – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca Importance of Advanced Manufacturing Adopting innovative manufacturing technologies has several advantages that grow its acceptance and relevance among manufacturers across industries. The following are the most significant advantages of advanced manufacturing. Amplifying the product and process quality Improvement in productivity Encourages new ways to innovation Decreases production time Considering the factors above that contribute to the production process becoming more efficient, productive, and revenue-generating, advanced manufacturing will continue to dominate the manufacturing business in 2022. Top Five Technologies That Are Advancing Manufacturing in 2022 To better understand the current trends in manufacturing technology, let us comprehend the technologies that are advancing the manufacturing industry. Additionally, discover how these technologies help manufacturers to advance their manufacturing processes. Cloud Computing Cloud computing in manufacturing is used for marketing, product development, inventory management, and productivity management. It stores software and commercial data via internet connections. Cloud computing is becoming a prevalent technology because it enables manufacturers to improve communication and manage the entire production cycle effectively. According to MarketsandMarkets' study, the global cloud computing market will also increase to 832.1 billion dollars by 2025, growing at a 17.5 percent annual rate in the following years. Benefits of Cloud Computing Fewer technical issues when compared to traditional software use Cost savings because no in-house servers are required Cloud computing enables easy scalability for your developing firm Cloud computing provides centralized control and access from any device How did McDonald's use AWS cloud computing services to transform their customer service? Additive Manufacturing Additive manufacturing enables the fabrication of lighter, more sophisticated designs that would be impossible or prohibitively expensive to fabricate using conventional dies, molds, milling, and machining techniques. Rapid prototyping is another area where additive manufacturing thrives. As a result, it is gaining a grip in the manufacturing business. According to Statista's market research, the additive manufacturing industry is worth approximately 12.6 billion US dollars in 2020 and is predicted to increase at a compound annual growth rate of 17% until 2023. Benefits of Additive Manufacturing Reduces material waste Simplifies manufacturing processes Additive manufacturing enables on-demand production Increases supply chain flexibility The finished product can be made close to the end customer Robotics Robots are used in manufacturing to automate repetitive tasks, resulting in a more efficient assembly line. Humans and robots work together on a variety of things as well during the production of various products. Many jobs are hazardous or necessitate many supplies, which could be harmful to the human workers themselves. So, in such instances, robots play a significant role in executing manufacturing operations. Robotics' increasing application in production is transforming it into a necessary component of industrial processes in the future. According to Mordorintelligence's study, the robots industry was worth USD 27.73 billion in 2020 and is predicted to reach USD 74.1 billion by 2026, growing at a CAGR of 17.45 percent between 2021 and 2026. Benefits of Robotics Increased productivity when compared to traditional manufacturing Consistent speed and quality during goods production Increased workplace safety for all employees at the manufacturing plant Aids in more efficient use of floor space Internet of Things The Internet of Things allows devices to interconnect with one another and exchange data. The IoT connects assets to processes, systems, and people in manufacturing. This enables improved process integration, increased efficiency, and the advancement of manufacturing to the next transformation phase, Industry 4.0. According to Mordorintelligence's market research, the global IoT market is estimated to reach USD 1,386.06 billion in 2026, up from USD 761.4 billion in 2020, a CAGR of 10.53 percent over the forecast period of 2021 to 2026. Benefits of Internet of Things It contributes to increased energy efficiency by identifying and optimizing underperforming devices It monitors all processes and parameters to determine when to replace specific components It improves product quality by analyzing and correcting issues at any stage of the manufacturing process It reduces downtime by detecting and alerting production line personnel to problems It enables more informed decision-making by unlocking Virtual Reality Virtual reality enables plant managers to mimic manufacturing processes and assembly line layouts to discover potentially harmful scenarios. Additionally, virtual reality can immerse an employee in a future workstation and then capture their movement to assess task feasibility and proficiency. As a result, the usage of virtual reality in manufacturing is increasing daily and is widely seen as the industry's future. According to market research firm markets and markets, the worldwide virtual reality industry is estimated to rise by USD 20.9 billion by 2025, expanding at a 27.9 percent compound annual growth rate from 2020 to 2025. Benefits of Virtual Reality Enables a more thorough examination of the product's design Enables the gathering of feedback on future items before they are launched in the real world Final Words In recent years, advanced manufacturing technology has helped the manufacturing industry become more efficient, precise, and goal-oriented. As a result, manufacturers are eager to upgrade their current manufacturing facilities to state-of-the-art facilities. As a result, manufacturing companies would become more competitive and an integral industry component if they implement cutting-edge technologies. FAQs How do you define advanced manufacturing? Product and process improvement through inventive use of new technology is called advanced manufacturing. Which sectors are utilizing cutting-edge technology? Aerospace, Medical, Electronics, Transportation, Energy, and Consumer Product Production Companies are the top businesses or sectors that use cutting-edge technologies with sophisticated manufacturing. What is the difference between conventional manufacturing and advanced manufacturing? Traditional manufacturing adds value to attain the goal. Traditional manufacturing adds value to attain the goal. But, on the other hand, advanced manufacturing covers production methods in specific industries like aerospace, medical, pharmaceutical, etc.

Read More

Top Five Industries That Are Leveraging Additive Manufacturing

Article | October 20, 2021

Additive manufacturing has advanced significantly in recent years and is currently used in nearly every area to improve both products and processes in the manufacturing business. As a result, manufacturers have been more imaginative and innovative in offering relevant products to their target customer group due to this technological advancement. Mr. Matt Mong, a prominent business executive, also mentioned in one of his Media7 interviews, As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity. Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca The use of additive technology provides several advantages, including creating unique shapes and low production costs. In addition, the increasing application of additive manufacturing technologies is accelerating the growth of the additive manufacturing market. According to recent research conducted by Metal AM, the value of additively produced components is expected to increase by 15% annually from $12 billion in 2020 to $51 billion in 2030. Thus, additive marketing is the way forward for all industries. This article will cover the top five industries that utilize additive manufacturing and are advancing their businesses every day by overcoming the prevailing challenges such as production errors, downtime, and skilled labor shortage with the benefits of additive manufacturing. Five Industries Utilizing Additive Manufacturing Though additive manufacturing or 3D printing has penetrated almost all the industries, we have picked up a few of the prevailing industries that have started using additive manufacturing and excelling in it. Additive Manufacturing in Aerospace Aerospace has always been the first sector to adopt new technology. Precision is critical in this sector, as a failure of any component is not an option in aerospace. In aircraft production, dimension, weight, and temperature tolerance are critical, and additive technology provides every solution around this. As a result, additive manufacturing has evolved into a critical technology that adds value throughout the supply chain for prominent aircraft firms like Airbus, GE, Boeing, and TTM. Additive Manufacturing in Healthcare Healthcare or medical is one of the industries that is maximizing the benefits of additive manufacturing. Technology enables the medical sector to be more innovative, accurate, and capable of offering the most excellent medical solutions available today. It enables medical practitioners to rehearse before procedures and medical researchers to study functioning human tissues for basic biological research. In addition, it is utilized to fabricate tissues and organoids, surgical instruments, patient-specific surgical models, and bespoke prostheses. Thus, additive technology has altered the face of medicine, elevating it to a more sophisticated and solution-oriented state. Additive Manufacturing in Architecture As with other industries, additive manufacturing reshapes the architectural and construction sectors by eliminating conventional industrial barriers such as production time and cost, material waste, and design constraints. By utilizing 3D printing, designers can now quickly construct and demonstrate how structural parts will function and appear when combined. It also assists designers in seeing how the plan will seem subsequent execution. Additive Manufacturing in Manufacturing Nowadays, additive manufacturing, or 3D printing, is a significant part of the manufacturing process. For example, rather than fabricating a product from solid blocks, additive manufacturing may build a three-dimensional model utilizing fine powder, various metals, polymers, and composite materials as raw materials for constructing a 3D model with a three-dimensional printer. Additive Manufacturing in Education Additive manufacturing is reshaping the educational industry by introducing a new teaching trend and transforming the classroom experience for students. It is being used in various disciplines, including engineering, architecture, medicine, graphic design, geography, history, and even chemistry. They may produce prototypes, three-dimensional models, and historical objects, among other things. Thus, technology enables learners to get more practical information about their respective courses directly on the floor. How has General Electric (GE) been pioneering the use of Additive Manufacturing for 20 years? GE's primary competency is additive manufacturing (3D printing), and the company has made significant investments in the technology. It utilizes additive technology to manufacture a range of components for aviation and other sectors. This article will look at one of their manufacturing case studies and how additive technology enabled them to get the desired result from the end product. CASE STUDY: OPTISYS Optisys modified a vast, multi-part antenna assembly into a palm-sized, lighter, one-piece additive metal antenna. The antenna's aluminum material was chosen because of its surface conductivity, low weight, corrosion resistance, and stress and vibration resistance. Optisys was able to break even on machine acquisition within one year after acquiring its first Direct Metal Laser Melting (DMLM) equipment by utilizing additive technologies. (Source: General Electric) Benefits and Outcomes Non-recurring expenditures were reduced by 75%. Weight loss of 95% The size was reduced by 80%. Part-to-part reduction of 100-to-1 Cycle duration shortened from 11 to 2 months 5 product lines were created for AM, a new market growth Final Words Additive manufacturing benefits a wide variety of businesses. Industries must recognize the advantages of additive manufacturing and begin using the technology in their manufacturing processes to cut production time and costs while increasing product accuracy. This game-changing expansion of the additive manufacturing market across several industries is upgrading both products and production processes. FAQs How do you define additive manufacturing? Additive manufacturing (AM), more generally referred to as 3D printing, is a ground-breaking manufacturing technique that enables the creation of lighter, more robust components and systems. As the name implies, additive manufacturing is adding material to an item to create it. Is additive manufacturing the same as 3D printing? Both terms are interchangeable. Additive manufacturing and 3D printing manufacture components by connecting or adding material from a CAD file. Which companies specialized in additive manufacturing? American Additive Manufacturing, Forecast 3D, Sciaky, Inc., 3 Axis Development, Inc., Jonco Industries, Inc., Polyhistor International, Inc., and Caelynx, LLC are renowned companies for additive manufacturing in the United States of America. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "How do you define additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Additive manufacturing (AM), more generally referred to as 3D printing, is a ground-breaking manufacturing technique that enables the creation of lighter, more robust components and systems. As the name implies, additive manufacturing is adding material to an item to create it." } },{ "@type": "Question", "name": "Is additive manufacturing the same as 3D printing?", "acceptedAnswer": { "@type": "Answer", "text": "Both terms are interchangeable. Additive manufacturing and 3D printing manufacture components by connecting or adding material from a CAD file." } },{ "@type": "Question", "name": "Which companies specialized in additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "American Additive Manufacturing, Forecast 3D, Sciaky, Inc., 3 Axis Development, Inc., Jonco Industries, Inc., Polyhistor International, Inc., and Caelynx, LLC are renowned companies for additive manufacturing in the United States of America." } }] }

Read More

Manufacturing Production Planning and Control: What, Why, and How?

Article | January 3, 2022

Production planning and control are critical components of any manufacturing organization. It helps organizations with the regular and timely delivery of their goods. Furthermore, it allows manufacturing businesses to increase their plant’s efficiency and reduce production costs. Numerous software and tools for production scheduling and planning are available on the market, including Visual Planning, MaxScheduler, and MRPeasy, which assist manufacturing organizations in planning, scheduling, and controlling their production. According to KBV Research, the manufacturing operations management software market is anticipated to reach $14.6 billion by 2025 globally, expanding at a market growth of 10.2 percent CAGR during the forecast period. So, what exactly is production planning and control? Production planning is an administrative process within a manufacturing business. It ensures that sufficient raw materials, personnel, and other necessary items are procured and prepared to produce finished products according to the specified schedule. Scheduling, dispatch, inspection, quality control, inventory management, supply chain management, and equipment management require production planning. Production control makes sure that the production team meets the required production targets, maximizes resource utilization, manages quality, and saves money. “Manufacturing is more than just putting parts together. It’s coming up with ideas, testing principles and perfecting the engineering, as well as final assembly.” – James Dyson In oversize factories, production planning and control are frequently managed by a production planning department, which comprises production controllers and a production control manager. More significant operations are commonly monitored and controlled from a central location, such as a control room, operations room, or operations control center. Why Should You Consider Production Planning? An efficient production process that meets the needs of both customers and the organization can only be achieved through careful planning in the early stages of production. In addition, it streamlines both customer-dependent and customer-independent processes, such as on-time delivery and production cycle time. A well-designed production plan minimizes lead time, the period between placing an order and its completion and delivery. The definition of lead time varies slightly according to the company and the type of production planning required. For example, in supply chain management, lead time refers to the time required for parts to be shipped from a supplier. Steps in Production Planning and Control Routing The first stage of production planning determines the path that raw materials will take from their source to the finished product. You will use this section to determine the equipment, resources, materials, and sequencing used. Scheduling It is necessary to determine when operations will occur during the second stage of production planning. In this case, the objectives may be to increase throughput, reduce lead time, or increase profits, among other things. Numerous strategies can be employed to create the most efficient schedule. Dispatching The third and final production control stage begins when the manufacturing process is initiated. When the scheduling plan is implemented, materials and work orders are released, and work is flowing down the production line, the production line is considered to be running smoothly. Follow-Up The fourth stage of manufacturing control ascertains whether the process has any bottlenecks or inefficiencies. You can use this stage to compare the predicted run hours and quantities with the actual values reported to see if any improvements can be made to the processes. Production Planning Example Though production planning is classified into several categories, including flow, mass production, process, job, and batch, we will look at a batch production planning example here. Manufacturing products in batches is known as "batch production planning." This method allows for close monitoring at each stage of the process, and quick correction since an error discovered in one batch can be corrected in the next batch. However, batch manufacturing can lead to bottlenecks or delays if some equipment can handle more than others, so it's critical to consider capacity at every stage. Example Consider the following example of batch production planning: Jackson's Baked Goods is in the process of developing a production plan for their new cinnamon bread. To begin with, the head baker determines the batch production time required by the recipe. He then adjusts the bakery's weekly ingredient orders to include the necessary supplies and schedules the weekly cinnamon bread bake during staff downtime. Finally, he creates a list of standards for the bakery staff to check at each production stage, allowing them to quickly identify any substandard materials or other batch errors without wasting processing time on subpar cinnamon bread. Final Words Running a smooth and problem-free manufacturing operation relies heavily on a precise production planner. Many large manufacturing companies already have a strong focus on streamlining their processes and making the most of every manufacturing operation, but small manufacturing companies still have work to do in this area. As a result, plan, schedule, and control a production that will enable you to run your business in order to meet its objectives. FAQ What is the difference between planning and scheduling in production? Production planning and scheduling are remarkably similar. But, it is critical to note that planning determines what operations need to be done and scheduling determines when and who will do the operations. What is a production plan? A product or service's production planning is the process of creating a guide for the design and manufacture of a given product or service. Production planning aims to help organizations make their manufacturing processes as productive as possible.

Read More

3 Sales-Driving Manufacturing Marketing Strategies

Article | December 28, 2021

Successful manufacturing marketing strategies are all you need to grow your business and make it visible in every way to your target customer group. Many manufacturers are now becoming vigilant towards B2B marketing and have started forming an individual marketing budget in their annual budgets. “We should quantify marketing to inform what we do – not to decide what we do.” – Rory Sutherland, Vice-Chairman, Ogily As per Statista, nearly half of B2B organizations said they’re planning to boost their content budget in the next year. As a result, B2B marketing for manufacturers must be redesigned and smartly strategized in order to be more effective and fruitful. This article will focus on the significant challenges manufacturers face in B2B marketing and how manufacturers use the three most sales-driven manufacturing marketing strategies. 4 Biggest Marketing Challenges in B2B & Manufacturing Develop Tailored Experiences You have a few seconds to capture the customer's interest. When done correctly, personalization may help. With persistent multi-channel marketing, you may strengthen your brand in target areas. Additionally, an account-based marketing approach enables you to focus on important clients while generating customized content for them. Integrate agile methods to test novel ideas across your business without demanding extensive approval. Further, crowdsourced content, B2B communities, and advocate marketing should be prioritized. Convert Leads into Sales With the right strategy, you may generate more high-quality leads. Relate marketing expenditures to sales and demonstrate the impact of marketing on the bottom line. Align marketing and sales by focusing on the customer's purchasing journey. Increase the quality of your leads, transparency, and collaboration with your partners. Measure Marketing Performance Marketers will be asked to demonstrate ROI and forecast future actions. Proactively calculate the MROI (Marketing Return on Investment) on marketing and sales investments. Determine how to get the most out of your marketing budget by doing more with less. Focus on making data-driven judgments rather than relying on guesswork. Maximize the Marketing Tech Investment As a manufacturer, you have access to a number of tools and resources. You will need to collaborate with your technical team to integrate it. Collaborate with your IT team to effectively adapt, innovate, and apply technology. By integrating current technologies, you can automate and improve marketing campaigns more efficiently. “Marketing professionals have to act as conveners and connect the dots so that there is alignment between stakeholders like sales and operation teams and executive leadership on what products and services will drive growth in any given quarter." – Maliha Aqeel, Director of Global Communication, Fix Network World in conversation with Media7 3 Best B2B Marketing Strategies for Manufacturers That Drive Sales Consider Purchasing an E-commerce Platform Consumer behavior is driving manufacturing transformation, particularly the shift to digital channels. Manufacturers who still handle consumers solely by phone, fax, or email risk losing their loyalty as their worlds and tastes grow increasingly digital. Manufacturers have clearly acknowledged the digital transition in 2021. This year's Manufacturing & E-Commerce Benchmark Report says 98% of manufacturers have, or plan to have, an e-commerce strategy. Moreover, 42% of manufacturers who engaged in e-commerce and digital said it strengthened client connections. How does e-commerce benefit manufacturers? Distributes a customized catalog to your customers Ascertains those spare components are visible It allows customers to customize items online Sells your whole range online Increases your consumer base Focus on the User Experience and Interface (UX/UI) The term "User Experience" refers to all elements of an end user's engagement with a business, its goods, and services. The purpose of user experience is to establish a connection between company objectives and user demands. An engaging user interface or user experience keeps users engaged and consumers pleased. Additionally, it enhances the rate of return on investment (ROI). That is why it is necessary to maintain great UI/UX quality. How does UX/UI benefit manufacturers? Increases the number of conversions Support is less expensive It helps with SEO Brand loyalty is increased Embrace an Omni-channel Strategy Millennials represent 73% of those making buying decisions for companies. Part of this means offering a seamless, consistent shopping experience across a variety of channels. With the right CRM solution, you'll eliminate a lot of the legwork associated with targeting specific buyers. Manufacturers can leverage omni-channel to increase availability, promote sales and traffic, and connect digital touchpoints. How does Omni-channel benefit manufacturers? Supports marketers in developing trust Enhances the user experience with the brand It clarifies a complex subject Final Words Developing a successful manufacturing marketing plan is all that is required to set your organization apart from the competition. Consider thinking outside of the box and developing innovative manufacturing marketing strategies that will surprise your targeted customers and keep you on their minds at all times. B2B marketing for manufacturers has long been a priority, since manufacturers frequently overlook this aspect of their business when they should. Utilize the above-mentioned sales-driven manufacturing marketing methods to assist your organization in growing and reaching the maximum range of target prospects. FAQ What is the goal of business-to-business marketing? B2B marketing's goal is to familiarize other businesses with your brand name and the value of your product or service in order to convert them into clients. How can manufacturers energize their market presence? Manufacturers may boost their market presence by advertising on various social media platforms, opting for native language ads, and partnering with influencers to promote their products or services.

Read More

Spotlight

Sage Automotive Interiors

Sage Automotive Interiors is a leading global supplier of specialty-designed, high-performance technical textiles for the automotive industry. With offices and manufacturing facilities in the U.S., Europe, Japan, China, Brazil, and Korea, Sage has a vision to be the market leader in design, engineering and technical capability supported by world- class manufacturing. Our core strengths include consumer research, sustainability and innovative problem solving for the OEM.

Events