Additive manufacturing goes mainstream in the industrial sector

JOHN CAULFIELD| September 17, 2019
ADDITIVE MANUFACTURING GOES MAINSTREAM IN THE INDUSTRIAL SECTOR
In recent years, the design firm Gresham Smith has seen the introduction of additive manufacturing into its industrial-sector work. We have several clients that are using additive manufacturing to make production tools, says David Verner, RA, Executive Vice President in the firm’s Industrial market.

Spotlight

AFB International

AFB International, the palatability performance people, launched in 1986 and has grown to be the global science and technology leader in pet food palatability. We develop and produce a full range of liquid and dry palatability enhancers using high-quality ingredients proven to optimize companion animal response and consumption.

OTHER ARTICLES

Quality Digest Defines Enhanced Webinar Events

Article | May 18, 2021

For twenty years as an editorial contributor to Quality Digest magazine, I have had the pleasure of authoring or collaborating more than 80 articles for the publication. During this two-decade tenure, I have worked with Dirk Dusharme (pictured left), Editor in Chief of Quality Digest. Quality Digest’s website receives more than three million page views each year, which provide editorial content, live broadcasts, videos, and on-demand webinars presented by industry experts on international quality standards, leadership, manufacturing, metrology, statistical process control, training, and more. Quality Digest continues its important role as companies navigate a post-COVID reality with a critical role of safety, quality, efficiency, and resiliency. Quality elements are no longer an after-thought. It is essential when examining automation, lean manufacturing, and new paradigms for best practice. During COVID, all of us became more remote savvy and the demand for visionary content and information essential. According to Dusharme, “Since their debut almost a decade ago, Quality Digest's "enhanced" webinar events have raised the bar for the traditional webinar experience. Our audience has come to expect concise, informative, and engaging presentations with subject matter experts who know what they are talking about. Apart from the traditional quality topics, we delve into areas that broaden our audience’s knowledge. These topics range from cybersecurity, to supply chain management, to understanding and dealing with cognitive biases. Our goal is to provide up-to-date, actionable information that our audience can immediately put to use. Live video feeds of the presenters and the products, interactive Q&A sessions, surveys, and valuable downloads all make up our usual webinar experience, followed by next-day access to the on-demand recording and materials.” Enhanced Webinars from Quality Digest feature real-time streaming video of host, subject matter expert, and a case study in action. Users can email questions, chat, or download files in real-time. This modality is ideal for visual case studies/product demos, team or customer training, and new product/new service announcements.

Read More

Examples of Agile Manufacturing to See Why It Is Very Critical

Article | December 8, 2021

An agile manufacturing strategy is one that places a strong priority on responding quickly to the needs of the customer, resulting in a major competitive advantage. It is a captivating method to build a competitive work system in today's fast-moving marketplace. An agile organization must be able to adapt quickly to take advantage of limited opportunities and rapid shifts as per client demand. Agile manufacturing is gaining favor among manufacturers due to its several benefits, including increased work productivity and good control over the final deliverable. Furthermore, the shorter time to market is expanding the global market for enterprise agile transformation services. According to Market Watch, with a CAGR of 17.9% from 2019 to 2026, the US enterprise agile transformation services market is predicted to reach $18,189.32 million by 2026. So why is agile manufacturing gaining traction? What challenges do manufacturers encounter when implementing agile manufacturing, and how have industry leaders like GE, Adobe, and Accenture effectively implemented agile methodology in their organizations and become the best examples of agile manufacturing? In this article, we'll take a closer look at each point. What Is the Importance of Agile Manufacturing? The term "agile manufacturing" refers to the use of a variety of different technologies and methodologies in the production process. In order to meet market standards and criteria, organizations must be able to adapt quickly and effectively to their customers' needs by bringing agility to manufacturing. To ensure the quality of products and the cost of production are kept to a minimum, agile manufacturing helps firms to regulate their end product. Because it immediately addresses the needs and worries of the clients, it is an effective strategy as well. By using this method, firms may better understand the market and use it to their advantage by creating products that meet the needs of their customers. Challenges While Adopting Agile Methodologies on a Project When we talk about agile challenges when implementing it on any project, some will be routine and some will be unique. So, let's get a quick grasp on the agile challenges. Communication about the project: Clear communication between the development team and the product owner is critical throughout the project development life cycle. Any miscommunication can have an impact on the product's quality and the end result of the entire process. Managing the day-to-day operational challenges: Throughout the project, daily minor or large operations play a significant impact on the overall project output. Any obstacles encountered when working on everyday chores should be resolved immediately to avoid any delays or halts in the process. To make it function, you'll need experience: Any inexperienced product owners, scrum masters, or individuals new to the agile approach may have a negative impact on the project's expected output. Various project contributors' buy-in: Inadequate training, a lack of motivation to show up from project participants, keeping customers in the loop, and a lack of departmental management are some of the problems that may hinder the accurate implementation of the agile methodology. The presence of one or more of these obstacles in any business or project may jeopardize the agile methodology and its total output. Though there are many online training courses and books available on how to integrate agile practices into your project, each organization's scenario is unique, as are the challenges they encounter. As a result, handling the situation with experienced personnel that have a can-do attitude is what is required to make it work. Following that, we'll look at some manufacturing business agile examples and how they've successfully implemented agile methodology in their organizations. Agile Manufacturing Examples We'll look at one of the most well-known industrial examples of agile manufacturing that has successfully implemented the methodology and achieved great outcomes. Take a peek at it. Adobe One of the most popular agile manufacturing examples in performance management revamps is Adobe. When Donna Morris was Senior Vice President of People Resources in 2012, she thought the annual performance evaluation and the stack-ranking process were bureaucratic, paperwork-heavy overly complicated, taking up too many management hours for the company. Aside from this, she discovered that it set barriers to joint efforts, creativity, and development. The Adobe team ditched annual performance reviews and encouraged managers and employees to regularly discuss performance via a system called “Check-in.” Adobe has reduced voluntary turnover by 30% and increased voluntary departures by 50% since making the transition. Moreover, the company saved 80,000 management hours annually. General Electric General Electric famously overhauled its performance management system in 2015, paving the path for other global firms to follow in the electronics industry. Annual performance evaluations and the infamous rank-and-yank performance rating system (ranking employees and regularly eliminating the bottom 10%) had GE decide they needed to update their performance management system. The annual appraisals lasted a decade longer than the ranking system. They are now a more agile organization. Instead of directing employees to attain goals, managers now guide and coach them. GE also decided to deploy an app they designed called PD@GE to facilitate regular employee feedback and productive performance discussions. Using the app, each employee establishes priorities and solicits feedback. They can also give real-time feedback. Employees can request a face-to-face meeting at any time to discuss transparency, honesty, and continuous improvement. These traits will not arise quickly and will require motivation and commitment for self-growth. Accenture According to Accenture's previous system, employees who perform well tend to be the most narcissists and self-promoters. Accenture wanted to revamp their system and reward genuine employees. So they started using on-going performance conversations while focusing on performance development. Because it required employees to compete with coworkers who may have had a different position, Accenture decided that forced ranking was illogical. The new system is more centered on the employee and aims to assist them in becoming the best version of themselves. Final Words Agile manufacturing is a way to get the finest results and exceed client expectations on every project. Businesses are benefiting from agile manufacturing because it improves the end product and helps them better utilize their resources. The necessity of agile manufacturing in business is vital, and organizations must overcome the challenges they encounter while applying the agile approach to any of their projects in order to reap the benefits of agile production. FAQ How does agile manufacturing help businesses? An agile manufacturing process enables organizations to respond to client requests with flexibility when market conditions change, as well as regulate their intended production while preserving product quality and minimizing costs. What is an agile organization? Unified alignment, accountability, specialization, transparency, and cooperation are key elements in an agile organization. To guarantee these teams can work efficiently, the organization must maintain a solid environment. What are the core elements of agility? Individuals and interactions over processes and tools are the four values of the Agile Methodology. A working program is preferable to in-depth documentation. During contract negotiation, the customer's cooperation is valued. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "How does agile manufacturing help businesses?", "acceptedAnswer": { "@type": "Answer", "text": "An agile manufacturing process enables organizations to respond to client requests with flexibility when market conditions change, as well as regulate their intended production while preserving product quality and minimizing costs." } },{ "@type": "Question", "name": "What is an agile organization?", "acceptedAnswer": { "@type": "Answer", "text": "Unified alignment, accountability, specialization, transparency, and cooperation are key elements in an agile organization. To guarantee these teams can work efficiently, the organization must maintain a solid environment." } },{ "@type": "Question", "name": "What are the core elements of agility?", "acceptedAnswer": { "@type": "Answer", "text": "Individuals and interactions over processes and tools are the four values of the Agile Methodology. A working program is preferable to in-depth documentation. During contract negotiation, the customer's cooperation is valued." } }] }

Read More

Which Additive Manufacturing Process Is Right for You?

Article | December 6, 2021

Additive Manufacturing (AM) uses computer-aided design (CAD) or 3D object scanners to create accurate geometric features. In contrast to traditional manufacturing, which frequently involves milling or other processes to eliminate superfluous material, these are produced layer by layer, as with a 3D printing process. The global additive manufacturing market is expected to grow at a 14.42 percent annual rate from USD 9.52 billion in 2020 to USD 27.91 billion in 2028, according to reports and data. Overall, the worldwide 3D printing industry is gaining traction due to various reasons, some of which are listed below. Significantly, greater resolution Reduced manufacturing costs as a result of recent technology breakthroughs Ease of creating customised goods Increasing possibilities for printing with diverse materials Funding by the government for 3D printing ventures Additive manufacturing is available or may be implemented in various procedures, which is the primary objective of this article. First, we'll look at the seven additive manufacturing processes and which one is the best to use. So let us begin. “Don’t be afraid to go outside of your industry to learn best practices. There might be something that surprises you or inspires you to try in your line of work.” – Emily Desimone, Director of Global Marketing at SLM Solutions Additive Manufacturing Processes There are numerous diverse additive manufacturing processes, each with its own set of standards. Here are the seven additive manufacturing procedures that many manufacturers consider based on their benefits from each process, or whichever approach best suits their product requirements. Material Jetting This additive manufacturing process is quite similar to that of conventional inkjet printers, in which material droplets are selectively placed layer by layer to build a three-dimensional object. After completing a layer, it is cured with UV radiation. VAT Photo Polymerization This procedure employs a technology called photo polymerization, in which radiation-curable resins or photopolymers are utilized to ultraviolet light to generate three-dimensional objects selectively. When these materials are exposed to air, they undergo a chemical reaction and solidify. Stereo lithography, Digital Light Processing, and Continuous Digital Light Processing are the three primary subcategories. Binder Jetting Binder jetting is a process that deposits a binding agent, typically in liquid form, selectively onto powdered material. The print head deposits alternating layers of bonding agent and construction material and a powder spreader to create a three-dimensional object. Material Extrusion S. Scott Crump invented and patented material extrusion in the 1980s using Fused Deposition Modeling (FDM). The continuous thermoplastic filament is fed through a heated nozzle and then deposited layer by layer onto the build platform to produce the object. Powder Bed Fusion Powder bed fusion procedures, particularly selective laser sintering, were the pioneers of industrial additive manufacturing. This approach melts the powdered material and fuses it using a laser or electron beam to form a tangible item. The primary kinds of powder bed fusion are direct metal laser sintering, selective laser sintering, multi-jet fusion, electron beam melting, selective laser melting, and selective heat sintering. Sheet Lamination Sheet lamination is a catch-all term encompassing ultrasonic additive manufacturing, selective deposition lamination, and laminated object manufacturing. All of these technologies stack and laminate sheets of material to form three-dimensional objects. After the object is constructed, the parts' undesirable areas are gradually removed layer by layer. Directed Energy Deposition Directed energy deposition technology employs thermal energy to melt and fuse the materials to form a three-dimensional object. These are pretty similar to welding processes, but are much more intricate. Which Additive Manufacturing Process is best? Why? Based on three fundamental factors, additive manufacturing techniques are categorized into seven types. First, the way material is solidified is determined first by the type of material employed, then by the deposition technique, and finally by how the material is solidified. The end-user often chooses an additive manufacturing technique that best suits his requirements, followed by the explicit material for the process and application, out of the seven basic additive manufacturing processes. Polymer materials are commonly used in AM techniques because they are adaptable to various procedures and can be modified to complicated geometries with high precision. Carbon-based compounds are used to strengthen polymers. Polymers, both solid and liquid, have been widely used due to the variety of shapes, formability, and end-use qualities available. Wherever the light-activated polymer contacts the liquid's surface, it instantly solidifies. Photo polymerization, powder bed fusion, material jetting, and material extrusion are the most common additive manufacturing procedures for polymers. The materials employed in these processes can be liquid, powder, or solid (formed materials such as polymer film or filament). How BASF is Using Additive Manufacturing BASF is a chemical company. BASF, one of the world's major chemical companies, manufactures and provides a range of 3D printing filaments, resins, and powders within its extensive material portfolio. The company, well-known in the 3D printing sector, has formed major material agreements with several 3D printer manufacturers, including HP, BigRep, Essentium, BCN3D, and others. BASF went even further in 2017 by establishing BASF 3D printing Solutions GmbH (B3DPS) as a wholly-owned subsidiary to expand the company's 3D printing business. In addition, BASF stated last year that B3DPS would change its name to Forward AM. BASF's role in the 3D printing business, however, is not limited to material development. BASF has made several investments in 3D printing companies over the years, including the acquisition of Sculpteo, one of the significant French 3D printing service bureaus, last year. BASF sees 3D printing as having a bright future. With the growing popularity of professional 3D printers, all of these systems will eventually require robust, high-quality polymer materials to perform at their best – and BASF has been paving the way to becoming one of the leading solution providers. Final Words All additive manufacturing procedures are unique and helpful in their way. Still, some have additional advantages over others, such as the material used, highresolution, precision, and the ability to build complicated parts. Because of these added benefits, photopolymerization, material jetting, powder bed fusion, and material extrusion are preferred over others. Therefore, choose the AM process that is best suited to your manufacturing business and will assist you in achieving the desired final product output. FAQs What are the benefits of additive manufacturing? AM enables manufacturers to reduce waste, prototyping costs, and customization while conserving energy and increasing production flexibility. Additionally, it benefits the supply chain and the environment, encouraging businesses to increase their manufacturing sustainability. What is the major challenge in additive manufacturing? Many businesses are struggling with the current difficulty of producing large and odd-sized parts using additive manufacturing. So, this can be considered a significant challenge in additive manufacturing. What are the steps of additive manufacturing? The additive manufacturing steps are divided into four steps as below, Step1 - Design a model with CAD software Step2 -Pre-processing Step3 -Printing Step4 - Post-processing { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What are the benefits of additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "AM enables manufacturers to reduce waste, prototyping costs, and customization while conserving energy and increasing production flexibility. Additionally, it benefits the supply chain and the environment, encouraging businesses to increase their manufacturing sustainability." } },{ "@type": "Question", "name": "What is the major challenge in additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Many businesses are struggling with the current difficulty of producing large and odd-sized parts using additive manufacturing. So, this can be considered a significant challenge in additive manufacturing." } },{ "@type": "Question", "name": "What are the steps of additive manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "The additive manufacturing steps are divided into four steps as below, Step1 - Design a model with CAD software Step2 - Pre-processing Step3 - Printing Step4 - Post-processing" } }] }

Read More

Computer Aided Manufacturing (CAM): Major Challenges and Their Solutions

Article | December 16, 2021

Computer-aided manufacturing (CAM) is a technology that revolutionized the manufacturing business. Pierre Bézier, a Renault engineer, produced the world's first real 3D CAD/CAM application, UNISURF CAD. His game-changing program redefined the product design process and profoundly altered the design and manufacturing industries. So, what is CAM in its most basic definition? Computer-aided manufacturing (CAM) is the application of computer systems to the planning, control, and administration of manufacturing operations. This is accomplished by using either direct or indirect links between the computer and the manufacturing processes. In a nutshell, CAM provides greater manufacturing efficiency, accuracy, and consistency. As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity.” – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca In light of the numerous advantages and uses of computer-aided manufacturing, manufacturers have opted to use it extensively. The future of computer-aided manufacturing is brightening due to the rapid and rising adoption of CAM. According to Allied Market Research, the global computer-aided manufacturing market was worth $2,689 million in 2020 and is expected to reach $5,477 million by 2028, rising at an 8.4% compound annual growth rate between 2021 and 2028. Despite all this, each new development has benefits and challenges of its own. In this article, we'll discuss the benefits of CAM, the challenges that come with it, and how to deal with them. Let's start with the advantages of computer-aided manufacturing. Benefits of Computer Aided Manufacturing (CAM) There are significant benefits of using computer-aided manufacturing (CAM). CAM typically provides the following benefits: Increased component production speed Maximizes the utilization of a wide variety of manufacturing equipment Allows for the rapid and waste-free creation of prototypes Assists in optimizing NC programs for maximum productivity during machining Creates performance reports automatically As part of the manufacturing process, it integrates multiple systems and procedures. The advancement of CAD and CAM software provides visual representation and integration of modeling and testing applications. Greater precision and consistency, with similar components and products Less downtime due to computer-controlled devices High superiority in following intricate patterns like circuit board tracks Three Challenges in CAM and Their Solutions We have focused on the three primary challenges and their solutions that we have observed. Receiving Incomplete CAD Updates Receiving insufficient CAD updates is one of the challenges. If, for example, the part update from a CAD engineer does not include the pockets that are required in the assembly, to the CAM engineer. SOLUTION: A modeler that enables developers of a CAM programs to create intuitive processes for features such as feature extraction and duplication across CAD version updates. A modeler is capable of recognizing and extracting the pocket's architecture and the parameters that define it. Additionally, the CAM application can enable the engineer to reproduce the pocket in a few simple steps by exploiting the modeler's editing features such as scaling, filling, extruding, symmetrical patterning, and removing. Last Minute Design Updates The second major challenge is last-minute design changes may impact manufacturers as a result of simulation. SOLUTION: With 3D software components, you may create applications in which many simulation engineers can work together to make design modifications to the CAD at the same time, with the changes being automatically merged at the end. Challenging Human-driven CAM Manufacturing The third major challenge we have included is that CAM engineers must perform manual steps in human-driven CAM programming, which takes time and requires expert CAM software developers. Furthermore, when the structure of the target components grows more complicated, the associated costs and possibility of human failure rise. SOLUTION: Self-driving CAM is the best solution for this challenge. Machine-driven CAM programming, also known as self-driving CAM, provides an opportunity to improve this approach with a more automated solution. Preparing for CAM is simple with the self-driving CAM approach, and it can be done by untrained operators regardless of part complexity. The technology handles all of the necessary decisions for CAM programming operations automatically. In conclusion, self-driving CAM allows for efficient fabrication of bespoke parts, which can provide substantial value and potential for job shops and machine tool builders. Computer Aided Manufacturing Examples CAM is widely utilized in various sectors and has emerged as a dominant technology in the manufacturing and design industries. Here are two examples of sectors where CAM is employed efficiently and drives solutions to many challenges in the specific business. Textiles Virtual 3D prototype systems, such as Modaris 3D fit and Marvellous Designer, are already used by designers and manufacturers to visualize 2D blueprints into 3D virtual prototyping. Many other programs, such as Accumark V-stitcher and Optitex 3D runway, show the user a 3D simulation to show how a garment fits and how the cloth drapes to educate the customer better. Aerospace and Astronomy The James Webb Space Telescope's 18 hexagonal beryllium segments require the utmost level of precision, and CAM is providing it. Its primary mirror is 1.3 meters wide and 250 kilograms heavy, but machining and etching will reduce the weight by 92% to just 21 kilograms. FAQ What is the best software for CAM? Mastercam has been the most extensively utilized CAM software for 26 years in a row, according to CIMdata, an independent NC research business. How CAD-CAM helps manufacturers? Customers can send CAD files to manufacturers via CAD-CAM software. They can then build up the machining tool path and run simulations to calculate the machining cycle times. What is the difference between CAD and CAM? Computer-aided design (CAD) is the process of developing a design (drafting). CAM is the use of computers and software to guide machines to build something, usually a mass-produced part.

Read More

Spotlight

AFB International

AFB International, the palatability performance people, launched in 1986 and has grown to be the global science and technology leader in pet food palatability. We develop and produce a full range of liquid and dry palatability enhancers using high-quality ingredients proven to optimize companion animal response and consumption.

Events