6 expert predictions for manufacturing in 2018

TRENT MUNRO| December 29, 2017
6 EXPERT PREDICTIONS FOR MANUFACTURING IN 2018
It’s been a big year for manufacturing in Australia. Activity surged to its highest level in 15 years during 2017. Then began to slow down again. We met robots such as Sophia and AMY. We said goodbye to 457 visas, and hello to Amazon. As the new year rapidly approaches, we can’t help but wonder. What does 2018 hold?

Spotlight

AnsaldoBreda

AnsaldoBreda is the Finmeccanica company specialized in the construction of technologically advanced rolling stock. Reliability and Responsability, Innovation and Sustainability are the core values on which AnsaldoBreda lies its roots to meet the challenges of rail transport. AnsaldoBreda has subsidiaries in the USA and Spain, and also in Norway, Denmark, Greece, Morocco, Taiwan, Turkey and Sweden.

OTHER ARTICLES

Filmmaking is Manufacturing

Article | July 27, 2021

Filmmaking is manufacturing. To date, no one has made the direct correlation between the two. As many entertainment professionals know, the budget gap between indie productions and big studio blockbusters continues to grow. The day of mid-budget, independent (indie) movies is disappearing as fast as the middle class in the American economy. According to newbiefilmschool, the average budget is barely at $2 million for these pictures and producers have been forced to adapt by discovering creative ways to decrease costs, while maintaining a high production values for a sophisticated audience with high expectations. Though there are many ways to cut costs, any business professional will agree to go with the options that bring down the budget the most. Just as dog is man’s best friend, here are three reasons why manufacturers have become the same for a filmmaker by saving money and time for every type of production. Film equipment manufacturers No long may a film lack quality in picture, sound, and bad acting. Once acceptable, these older movies were produced with the technology and film equipment constraints and from limited funding. Film equipment manufacturers from cameras, sound equipment, and computers cost less to achieve high production values. Film equipment companies face increasing competition, which has driven down the purchase price. Better equipment with significant technology improvements has reframed the indie film industry with high-level sound and image capture quality. The transition of cameras from film to digital was a notable shift for manufacturers. Many industry-insiders believe that digital is free, and film is expensive, but there is more the manufacturing construct. Digital cameras, when compared to film cameras in the same market price bracket, are much more expensive than analog counterparts. It is true that film costs money and is single-use. Digital memory cards are relatively expensive and can be reused. Film also needs to be developed and there is a cost associated with that production cost. There are other ways in which digital modalities save filmmakers. Automation Across all industries, efficiency always wins. Innovative manufacturers have developed machines to make numerous jobs easier for everyone. Machines have been assisting filmmakers since the invention of the camera. AI (artificial intelligence) is poised to change film even more and continues to augment human creativity. Storytellers work with computers during every process of creating a motion picture which has sped up the time it takes to complete each-step in film making. Automating pre-production processes, such as creating a budget and writing a script, is analogous to an ERP (enterprise resource planning) software for a traditional manufacturing operation. The Movie Magic budgeting software by Entertainment Partners has made creating a budget more efficient and accurate. Screenwriter programs vary from the downloadable Final Draft, and the purely cloud based, Celtx, are the reasons automated scriptwriting is the norm. These programs also automatically format writing to industry standards, facilitating the creative process. Automation in post-production is equally advanced through editing software for video, sound, effects, and colors all the way to distribution and promotional content. Editing footage from digital rather than film saves time and money. Industry favorites include Adobe Premiere Pro and Apple’s exclusive Final Cut Pro and are used on almost all well-known movies and TV shows. The impacts of COVID-19 on entertainment manufacturers Without question, the pandemic has affected every industry by creating an unanticipated production standstill. Entertainment manufacturers have sacrificed countless productions, lost billions of dollars, and major talent agencies have furloughed hundreds of employees. This negative impact is not just difficult for indie filmmakers, big studios are suffering just as much with production delays and cancellations still happening as this article goes to press. Any way back to the set is better than no set at all. A new necessity for productions to safely reopen includes epidemiologists and other public health specialists; they provide detailed strategies dealing with large crews who work in cramped spaces, makeup artists who get face-to-face with actors who kiss, hug, and fight on set. These COVID-19 consultants rely on the manufacturing industry for PPE supplies and carry out regular PCR tests. Face coverings and hand sanitizing stations have also become the norm, just like most other manufacturing operations.

Read More

Technologies to Adopt Now to Enable the Smart Warehouse Concept

Article | December 8, 2021

Why should warehouses be left behind as everything gets smarter in the manufacturing world? The future warehouse will be smarter and more innovative to speed up supply chain management procedures and assist businesses in intelligently segregating their raw materials and manufactured goods. So, what does it mean to have "a smart warehouse"? A smart warehouse is a big infrastructure that stores raw materials and manufactured goods and employs machines and computers to handle routine warehouse tasks that humans previously performed. Smart warehouses are inspired by smart factories and operate in a data-driven environment. It is the ability of the system in the warehouse to make it more efficient and productive by utilizing networked, automated technology. “I advocate business leaders get to know more about what AI can do and then leverage AI in proofs of concept.” – Michael Walton, Director, Industry Executive (Manufacturing) at Microsoft According to EASYECOM, nine out of ten businesses intend to include commercial service robots into their operations in some form. By 2025, it is projected that there will be roughly 23,000 robotic warehouses in the United States alone, up from only 2,500 in 2018. Furthermore, the global smart warehousing market is expected to grow at a CAGR of 11.5 percent from USD 14.8 billion in 2021 to USD 25.4 billion in 2026, according to GlobeNewswire. As can be seen, the current warehouse automation trends are scaling up the worldwide market for smart warehouses, and the value of the smart warehouse business has a long way to go in the future. So, what are the technologies that are changing traditional warehouses into intelligent warehouses? Continue reading this article to get a better understanding of this. Top 5 Warehouse Technologies to Take On Numerous manufacturing and non-manufacturing organizations, including IKEA, NIKE, and WALMART, utilize smart warehouses to streamline their overall operations. The technologies listed below assist many of them in implementing the modern warehousing idea. A Warehouse Management System Warehouse Management Systems, or WMSs, are comprehensive software systems that consolidate all of your critical data onto a single platform that can be easily accessed by team members and selected supply chain partners. This data compartmentalization allows for lightning-fast reporting, which allows for super-efficient planning, even for unexpected events. Overall, the use of warehouse management systems complements the use of other automated aspects perfectly. Automated Picking Tools The days of error-prone picking are long gone; now, when picking automation elements are integrated into the flow, warehouses can profit from near-perfect picking rates. In addition, picking procedures can be aided by various techniques, including voice-automated order picking, pick-to-light, and robotic order picking. These technologies also use cutting-edge barcoding choices that easily interface with your selected management software to provide the quickest and most accurate automated reporting experiences. Automated Guided Vehicles (AGVs) AGVs, or automatic guided vehicles, are the best approach to speeding up storage and retrieval processes. AGVs are becoming more robust as technology advances, but older models have proven safer and more cost-effective than manual labor. Their functions include pallet, rack, and other container storage and controlling and automating the entire receiving process. Platforms for Automated Inventory Control Automated inventory control platforms, when combined with a few other technological cornerstones, such as asset and inventory tags, may eliminate labor, guesswork, and unnecessary time from traditional inventory control. In addition, there are several advantages to using these platforms, including their ability to automatically count inventories and synthesize data for real-time reporting that can be viewed remotely. IoT Implementation The Internet of Things (IoT) is used by some of the world's most efficient smart warehouses, such as Amazon, as an entire concept rather than a specific technology. All of your automated and manual operations may be optimized when IoT is used to control all of your moving parts, both automated and manual. This innovative technology helps optimize a warehouse's inventory control systems, workforce planning, and, of course, the overall customer experience. While implementing technology improves the notion of a smart warehouse, it isn't always possible for every warehouse to do so instantly, especially since implementing technology takes significant financial and infrastructure changes. That's why warehouses are adopting the concept of collaborative robots (cobots). These are the autonomous elements that work with existing human workers. Cobots allow warehouses to preserve many of their existing procedures and infrastructure while gaining the benefits of fully autonomous elements. Amazon's Smart Warehouses Integrates Humans and Robots Amazon acquired Kiva Systems for $775 million in 2012, highlighting its interest in warehouse robotics. Kiva Systems was the sole known producer of warehouse robots, serving many different logistics organizations. Amazon bought Kiva Systems' machines, constructed and used them all. Amazon Robotics is a new business unit that the company has developed. Amazon recently established a semi-automated warehouse with human workers and robots. As a result, simple chores like moving parcels and scanning barcodes are automated. However, organizing goods and carrying complex objects (like bottles) is still part of human work. Amazon's automated warehouse employs over 400 robots and hundreds of human employees. Amazon's rise in two crucial areas – online shopping and logistics – has been accelerated by warehouse robots. Final Words Modern warehousing is a new trend in the manufacturing industry that automates numerous procedures required for keeping manufacturing materials and products organized. Technology trends in warehousing are making manufacturers' jobs easier and promoting the future warehouse model in 2022. Implement the cutting-edge technology outlined above to stay current with warehousing trends and boost productivity, efficiency, accuracy, and flexibility for your personnel and their operations. FAQ What are the key benefits of a smart warehouse? A smart warehouse improves the warehouse's productivity, efficiency, and accuracy. It also allows personnel and procedures to be flexible. What exactly is WMS? A warehouse management system (WMS) is a software solution that handles the supply chain from the distribution center to the retail shelf. What is COBOT? Cobots are designed to work with people rather than replace them. Cobots are also known as people-focused robots. They can help humans simplify and improve their work. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What are the key benefits of a smart warehouse?", "acceptedAnswer": { "@type": "Answer", "text": "A smart warehouse improves the warehouse's productivity, efficiency, and accuracy. It also allows personnel and procedures to be flexible." } },{ "@type": "Question", "name": "What exactly is WMS?", "acceptedAnswer": { "@type": "Answer", "text": "A warehouse management system (WMS) is a software solution that handles the supply chain from the distribution center to the retail shelf." } },{ "@type": "Question", "name": "What is COBOT?", "acceptedAnswer": { "@type": "Answer", "text": "Cobots are designed to work with people rather than replace them. Cobots are also known as people-focused robots. They can help humans simplify and improve their work." } }] }

Read More

The Future of Additive Manufacturing: Trends and Predictions

Article | January 21, 2022

3D printing technology and its role in future manufacturing are grabbing the interest of industry experts. In terms of elevating future products, future additive manufacturing has a lot to offer the business. Additive manufacturing is developing and stretching its wings on a daily basis, becoming an integral part of every industry, including manufacturing, healthcare, education, and more. In this article, we'll shed some light on the 3D printing future trends, which will assist the business in deepening its impact across industries. Furthermore, we will explore whether the additive manufacturing business is worth investing in as well as who the major players are that have already invested in the future of 3D printing. Future Trends in the Additive Manufacturing Industry Enhanced Machine Connectivity Making AM solutions (including software and hardware) easier to integrate and connect to the factory floor is one of the key AM trends we predict to advance in the coming years. It has been a long time since the AM hardware market has been filled with closed, or proprietary, systems. These systems generally function with materials and software given or approved by the machine OEM and are not easily integrated with third-party alternatives. Closed systems are important for process dependability, but they also restrict collaboration and connectivity. Companies expanding their AM operations will need to connect their machines and software to their production environments. When it comes to additive manufacturing, using siloed solutions is a surefire way to fail. Importantly, we see hardware manufacturers increasingly focusing on solutions that can be integrated with the production floor. For example, a 3D printing market leader like Stratasys is a good illustration of the trend. In December, the business announced an extension of its previously closed machines' connection.Consumers may now integrate and control their additive production using software programs of their choosing, not just Stratasys' systems. For AM facilities, system connectivity is no longer an option. It's exciting to see the AM industry players recognize and solve this requirement. AM and AI Continue to Converge AM growth is incorporating AI and machine learning. AI can help with material development, machine setup, part design, and workflow automation. So, in the future, we anticipate seeing more AI and AM technology integration. Combined with AM systems, AI will improve process control and accuracy. For example, Inkbit is currently working on an AI-powered polymer vision system. This technology can scan 3D printing layers and anticipate material behavior during printing. Generative design, already generally recognized as a key digital advance in AM, may tremendously benefit from AI and machine learning. It has so far been utilized to improve load routes when strength and stiffness are dominant. It can also be utilized to optimize thermal or vibration. AI and machine learning will advance generative design, allowing new concepts to be completely suited to AM.While we may be a few years away from fully developing the capacity to automatically adapt designs to process, we anticipate significant breakthroughs this year that will bring us closer. AM Will Drive Decentralization In order to future-proof their supply chains, many manufacturers are following new supply chain models and technology that allow them to cut prices or switch goods more easily. Increasing flexibility and agility will necessitate distributed, localized production, assisted by additive manufacturing.To reduce the number of steps required to manufacture complex metal or polymer structures, shorten lead times, and enable digital inventory management, digital inventory management can be automated. These advantages make it ideal for the distributed manufacturing model. We believe that in the near future, more businesses will actively explore distributed manufacturing with AM. According to a recent HP survey, 59% of organizations are now considering hybrid models, while 52% are looking into localized digital manufacturing. 3D Printing Future: Major Predictions In Jabil's 2021 3D printing trends survey of over 300 decision-makers, 62% of participants claim their organization is actively using additive manufacturing for production of their product components, up from 27% in 2017. Many such manufacturers are on the lookout for the latest additive manufacturing trends and forecasts. So let's begin. Increasing Flexibility and Customization Customized goods are a popular consumer trend, impacting several sectors. Rather than buying a mass-produced item, customers are increasingly demanding a custom-made item that meets their specific needs. Additive manufacturing's low-volume production capabilities simply enable personalization and customization. 3D printing allows for more responsive design options, particularly for additive manufacturing. Manufacturers can afford to make smaller batches, allowing designers and engineers to alter product ideas and develop them cost-effectively when inspiration strikes, the public mood is understood, or customer feedback drops in. Materials Drive the Future of Digital As the additive manufacturing ecosystem grows, the importance of materials cannot be overstated. Besides high equipment costs, materials and limited additive manufacturing ecosystems have hindered the 3D printing industry's growth. The market is flooded with 3D printing materials, but few are advanced enough to fulfill industry standards.Due to volume constraints in most sectors, suppliers and manufacturers aren't motivated to develop innovative materials for new uses. However, the future of 3D printing is in engineered and application-specific materials. Various sectors have unique difficulties that demand unique solutions. New designed materials will revolutionize new uses, including highly regulated sectors. Industries will reward those who can promptly introduce 3D printing materials adapted to specific industrial and engineering needs. This will allow more 3D printing applications to be supplied and the whole digital manufacturing flywheel to start spinning. 3D Printing and a Sustainable Future Finally, additive manufacturing promotes sustainability and conservation. Besides decreasing trash, 3D printing saves energy. The Metal Powder Industries Federation studied the difference between making truck gear using subtractive manufacturing (17 steps) and additive manufacturing (6 steps). 3D printing uses less than half the energy it takes to produce the same product. 3D printing also reduces the need for moving products and materials, reducing the amount of carbon emitted into the environment. So we can see that digital and additive solutions already contribute to a more sustainable future. Is Investment in the Future of Additive Manufacturing Worth It? In recent years, there has been an explosion of investment in industrial 3D printing. Hundreds of millions of dollars have flowed into the industry in recent years, assisting new businesses. Desktop Metal ($160 million), Markforged ($82 million), and 3D Hubs ($18 million) have all received significant funding in the past. According to a recent report and data analysis, the global additive manufacturing market will hit USD 26.68 billion by 2027. A rising level of government support for additive manufacturing across regions is driving market demand. For example, America Makes, the foremost national initiative in the US since 2012 dedicated to additive manufacturing (3D printing future technology), received USD 90 million in support from the government, commercial, and non-profit sectors. Given the industry's expenditures and the expanding need for 3D printing, investing in the additive manufacturing industry or 3D printing is certainly encouraged. Final Words Additive manufacturing is being used in practically every industry, and companies are researching how technology might be used in their specific fields. The numerous advantages and sustainability that 3D printing provides are the major benefits that manufacturers and other industry professionals notice with 3D printing.Future manufacturing will be significantly more accurate and simple to run thanks to 3D printing technologies. Considering the trends and projections listed above, you may have a better understanding of 3D printing's future and make an informed investment decision. FAQ What is the future of 3D printing? 3D printing, or additive manufacturing, has the potential to empower everything from food to coral reefs. 3D printers may soon be seen in homes, companies, disaster zones, and perhaps even outer space. Why is 3D printing important to society? 3D printing results in waste reduction and so eliminates the need for periodic waste reduction, reuse, and recycling. So it helps society with no carbon footprint. Why is it known as additive manufacturing? The term "additive manufacturing" refers to the fact that the building process adds layers rather than removes raw materials.

Read More

Technologies That Will Keep You Ahead in the Manufacturing Realm

Article | November 20, 2021

Modern manufacturing methods are pioneering and adopting manufacturing industry advancements. To remain competitive in the present era and provide the most excellent industry solutions to your organization and target customer group in 2022, you must employ new manufacturing technologies in your manufacturing processes. Additionally, embracing current technologies is the ideal approach to tackle the industry's current challenges such as workplace safety, digitalization of operations, and a lack of skilled workers. This article will discuss some of the leading manufacturing technologies that transform traditional manufacturing facilities into smart manufacturing factories. So, let us begin. Manufacturing Technology & Innovations for 2022 To better understand industry 4.0, let's look at some of the manufacturing technologies that will dominate the manufacturing industry in 2022. 3D Printing Numerous industries, including aerospace, healthcare, electronics, and architecture, utilize 3D printing in manufacturing. It is the most widely used technology across industries and will remain so in 2022 and in the years to come. We may also anticipate more advancements in this technology to help overcome current barriers to 3D printing adoption, including equipment costs, material constraints, lengthier manufacturing times, a lack of knowledge, and legal issues. Additionally, it would assist manufacturers in overcoming current manufacturing challenges such as increasing product demand, increasing automation, and locating and retaining the workforce in manufacturing plants. It is vital to incorporate 3D technology into production processes to achieve greater precision and accuracy in manufacturing. IoT The Internet of Things is a critical component of the industry 4.0 revolution. It has altered the environment of data collection and analysis across sectors. For example, the Internet of Things is assisting manufacturers in better understanding manufacturing and supply chain operations, forecasting product demand, and boosting customer experiences. Implementing IoT in your manufacturing plant will also help you avoid production delays and increase the performance of your production lines. Additionally, it will decrease equipment downtime and improve process efficiency. It also enhances worker safety and enables more effective labor management. To begin implementing IoT in your manufacturing plant, you must first examine your manufacturing processes and research how other organizations have implemented IoT in their manufacturing processes or products. This method will assist you in determining the optimal location to begin integrating the IoT in your manufacturing plants and transforming them into smart ones. “Once you start to look at yourself in the right way and realize that projects are at the core of your business, it is easy to see how you should use technology to support your business.” – Matt Mong, VP of Market Innovation and Project Business Evangelist at Adeaca. GD & T The model created in the CAD program for any product is not exactly replicated with the exact dimensions during the production procedures. Thus, manufacturers or engineers utilize GD&T (Geometric Dimension &Tolerancing) to manage and communicate the permissible variation within a product assembly to manufacturing partners and inspectors. GD&T is a programming language that enables developers and inspectors to optimize functionality without incurring additional costs. The primary advantage of GD&T is that it expresses the design intent rather than the final geometry. However, as with a vector or formula, it is a representation of the actual item. AR & VR The two primary transformation aspects in the industry 4.0notion are augmented reality (AR) and virtual reality (VR). AR technology in manufacturing enables firms to operate more efficiently by reducing production time. Additionally, it discovers and resolves manufacturing process difficulties. Virtual reality technology benefits the industrial business in a variety of ways. It enables product designers to mimic their prototypes or models using powerful virtual reality software. This enables them to correct faults at the first stage of production and minimize production time and cost. Additionally, the technology provides additional benefits, such as increased workplace productivity and safety. ERP Enterprise Resource Planning (ERP) refers to a comprehensive end-to-end software solution that is used across sectors. It assists the manufacturing business in successfully maintaining production processes and other operational data by avoiding numerous roadblocks along the way. ERP technology enables enterprises to improve process efficiency and product quality by tackling industry-specific difficulties such as insufficient data, operation integration, inventory control, supply chain management, and on-time delivery. Discover How John Deere Manufactured Their Tractors Using Cutting-edge Technologies John Deere is a significant firm that embraces innovation and the Internet of Things. The company integrates Internet of Things sensors, wireless communication, and intelligent land management systems. It further integrates IoT tools into its manufacturing process, bridging the gap between technologies. Additionally, the company is a pioneer in GPS technology. Its most modern technology, which it incorporates into tractors, is accurate to within two centimeters. Additionally, the organization has implemented telemetry technology for predictive maintenance. Final Words Manufacturing innovations are assisting manufacturers in modernizing their traditional manufacturing processes. Modern manufacturing is equipped with modern technologies that aim to improve the processes and goods, increasing the manufacturers' commercial revenues. So, to remain competitive in this age of technological innovation, manufacturers must update their manufacturing processes to remain relevant in today's manufacturing world. FAQ What is manufacturing innovation? Manufacturing innovation includes new technology, supply chain modifications, and product and process improvements. As a result, businesses can benefit significantly from innovation and typically surpass their competitors. Which technologies are considered to be a component of advanced manufacturing? 3–D printing, robotics, IoT, nanotechnology, cloud computing, robotics, and big data are the significant components of advanced manufacturing. How are cutting-edge technologies assisting the manufacturing sector? The cutting-edge technology can precisely estimate demand to set production objectives, analyze machine data to predict when parts will break before a human operator can detect, and more. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What is manufacturing innovation?", "acceptedAnswer": { "@type": "Answer", "text": "Manufacturing innovation includes new technology, supply chain modifications, and product and process improvements. As a result, businesses can benefit significantly from innovation and typically surpass their competitors." } },{ "@type": "Question", "name": "Which technologies are considered to be a component of advanced manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "3–D printing, robotics, IoT, nanotechnology, cloud computing, robotics, and big data are the significant components of advanced manufacturing." } },{ "@type": "Question", "name": "How are cutting-edge technologies assisting the manufacturing sector?", "acceptedAnswer": { "@type": "Answer", "text": "The cutting-edge technology can precisely estimate demand to set production objectives, analyze machine data to predict when parts will break before a human operator can detect, and more." } }] }

Read More

Spotlight

AnsaldoBreda

AnsaldoBreda is the Finmeccanica company specialized in the construction of technologically advanced rolling stock. Reliability and Responsability, Innovation and Sustainability are the core values on which AnsaldoBreda lies its roots to meet the challenges of rail transport. AnsaldoBreda has subsidiaries in the USA and Spain, and also in Norway, Denmark, Greece, Morocco, Taiwan, Turkey and Sweden.

Events