3D printed rocket: Rocket Lab launches first NASA mission

LUCIE GAGET| January 09, 2019
3D PRINTED ROCKET: ROCKET LAB LAUNCHES FIRST NASA MISSION
Did you know that you can 3d print Rocket engines?  Not only that but today, we will tell you about a new example of a 3D printed rocket. The company Rocket Lab developed a 3D printed rocket and it has launched its first mission for NASA. A great way to end in 2018!

Spotlight

Intcomex

Intcomex is a premiere value-added distributor of IT products focused solely on serving Latin America and the Caribbean. It distributes computer equipment, components, peripherals, software, computer systems, accessories, networking products and digital consumer electronics to more than 40,000 local customers in over 45 countries. It offers single source purchasing to its customers by providing an in-stock selection of more than 5,700 products from over 220 vendors, including many of the world's leading IT products manufacturers.

OTHER ARTICLES

Top Electronics Manufacturing Trends to Watch in 2022

Article | October 13, 2021

The electronics manufacturing business is adopting new technologies to create smart electronics manufacturing products for its consumer base. Next-generation technologies are shaping the future of the manufacturing industry by enabling it to create technologically advanced and user-friendly products. Matt Mong, one of the manufacturing industry's leading professionals, stated in an interview with Media7, “Be Different. Don’t position your product in an existing category. Instead, create your category and make the competition irrelevant and obsolete.” – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca. The year 2022 will be a year of advancement and development for the electronics manufacturing industry. So, manufacturers are eager to embrace new technologies and produce more innovative, more user-friendly goods that become part of consumers' daily lives and meet their needs. To make the manufacturing process manageable and deliver advanced products, we will look at the top five trends flourishing in the electronics manufacturing industry. Top Five Electronics Manufacturing Industry Trends Future manufacturing technologies are transforming the electronics manufacturing industry's processes and products. Let's look at the top electronics manufacturing industry trends for 2022, which will propel the sector to new heights of technological advancement. Utilizing the Benefits of the Internet of Things The Internet of Things is being used in both the manufacturing process and the products themselves. It enables electronic manufacturing products and processes to become more intelligent and performance-driven to fulfill business and customer needs. In electronics manufacturing, the Internet of Things (IoT) enables businesses to solve common production challenges such as product quality issues, changing demands, and a complex global supply chain. As a result, it increases productivity and efficiency while reducing human effort. Industrial units may gather and analyze real-time data and processes using IoT-based sensor systems. Additionally, it assists organizations in managing data and transforms traditional manufacturing into an intelligent manufacturing unit. Using an ERP System to Maintain the Company's Competitive Edge ERP (Enterprise Resource Planning) is a centralized management system for all operational and business activities. The software automates all manufacturing processes and enables the electronics manufacturing sector to achieve higher precision throughout the manufacturing process and product delivery. ERP has the potential to boost productivity, improve efficiency, decrease expenses, and increase profitability. ERP enables electronics manufacturers to forecast, plan, modify, and respond to changing market demands. By using an ERP system in your manufacturing unit, you may expand your business and increase revenue. Making Use of Big Data The electronics manufacturing industry benefits from the use of big data to make critical business decisions. It aids in the integration of previously isolated systems to provide a comprehensive view of industrial processes. It also automates data gathering and processing, allowing for more excellent knowledge of each system individually and collectively. Big data also assists manufacturers in discovering new information and identifying trends, allowing them to optimize operations, improve supply chain efficiency, and find variables that impact manufacturing quality, volume, or consistency. In addition, big data assists the electronics manufacturing industry in keeping up with the rapidly changing digital world. Using AR and VR to Create Consumer-friendly Goods AR and VR are future manufacturing technologies that are changing electronics manufacturing products and driving growth. Robotics is a crucial usage of virtual reality in electronics production. Manufacturers may use powerful virtual reality software to design goods. This implementation of virtual reality software reduces production errors and saves time and money. AR in electronics manufacturing allows product developers to generate interactive 3D views of new products before production. AR and VR are part of Industry 4.0, the digital revolution of conventional electronics production units. Adoption of 3D Printing on a Wide Scale One of the essential advantages of today's electronics 3D printing is that companies can quickly prototype PCBs and other electrical devices in-house. In addition, 3D printing has simplified the electronics manufacturing process, and it is currently being utilized to manufacture multilayer printed circuit boards. It uses material jetting technology to spray conductive and insulating inks onto the printing surface. Let's look at an example of an analogy that worked for Jinzhenyuan - The Electronic Technology Co. Ltd., managed by Mr. Huang Runyuan, Jinzhenyuan's General Manager, and based on the concept of Industry 4.0. (Reference: Forbes) Jinzhenyuan - The Electronic Technology Co. Ltd. Takes a Significant Step Forward with Industry 4.0 Jinzhenyuan - The Electronic Technology Co. Ltd., formed in 2012, sells its products globally. In addition, it manufactures cellphones, computers, cars, and a variety of other consumer electronics. Due to changing market needs, the firm planned to upgrade its production facility to industry 4.0 by the end of 2017 to participate in smart manufacturing. The company increased production efficiency, shortened production cycles, and cut costs due to the digital revolution. Today, Jinzhenyuan is regarded as a model of digital transformation in the community in which it works. Let’s observe the statistics for Jinzhenyuan following the deployment of Industry 4.0. 32% improvement in total production efficiency 33% cost reduction 41% decrease in R&D to production cycles 51% reduction in substandard parts rate – from 3,000 to 1,500 per million Final Words The electronics manufacturing sector is on the verge of a digital revolution that will improve the production process efficiency and cost-effectiveness. Many of the world's biggest firms, like Apple, Microsoft, Hitachi, and Saline lectronics, are developing future agile factories to keep up with the world's digital transformation. Future manufacturing technology will help your manufacturing company make the manufacturing process more efficient and boost the business revenue. FAQs What are the future electronics technologies? Smart grid solutions, wearable technology devices, prefabricated goods, the Internet of Things, and robots are some of the future electronics innovations that will propel the business forward. Is the supply chain benefiting from new technology trends? Yes, supply chain management benefits from smart technology as well. Trucks equipped with cutting-edge technologies can get real-time data on the weather and road conditions ahead of time. It contributes to the supply chain process's reduction of possible risks. Which manufacturers are implementing the industry 4.0 concept in their factories? Whirlpool, Siemens, Hirotec, Tesla, Bosch, and Ocado, among others, have turned their traditional factories into digitally smart ones that incorporate all of the cutting-edge technology necessary to improve and optimize the production process. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What are the future electronics technologies?", "acceptedAnswer": { "@type": "Answer", "text": "Smart grid solutions, wearable technology devices, prefabricated goods, the Internet of Things, and robots are some of the future electronics innovations that will propel the business forward." } },{ "@type": "Question", "name": "Is the supply chain benefiting from new technology trends?", "acceptedAnswer": { "@type": "Answer", "text": "Yes, supply chain management benefits from smart technology as well. Trucks equipped with cutting-edge technologies can get real-time data on the weather and road conditions ahead of time. It contributes to the supply chain process's reduction of possible risks." } },{ "@type": "Question", "name": "Which manufacturers are implementing the industry 4.0 concept in their factories?", "acceptedAnswer": { "@type": "Answer", "text": "Whirlpool, Siemens, Hirotec, Tesla, Bosch, and Ocado, among others, have turned their traditional factories into digitally smart ones that incorporate all of the cutting-edge technology necessary to improve and optimize the production process." } }] }

Read More

Filmmaking is Manufacturing

Article | July 27, 2021

Filmmaking is manufacturing. To date, no one has made the direct correlation between the two. As many entertainment professionals know, the budget gap between indie productions and big studio blockbusters continues to grow. The day of mid-budget, independent (indie) movies is disappearing as fast as the middle class in the American economy. According to newbiefilmschool, the average budget is barely at $2 million for these pictures and producers have been forced to adapt by discovering creative ways to decrease costs, while maintaining a high production values for a sophisticated audience with high expectations. Though there are many ways to cut costs, any business professional will agree to go with the options that bring down the budget the most. Just as dog is man’s best friend, here are three reasons why manufacturers have become the same for a filmmaker by saving money and time for every type of production. Film equipment manufacturers No long may a film lack quality in picture, sound, and bad acting. Once acceptable, these older movies were produced with the technology and film equipment constraints and from limited funding. Film equipment manufacturers from cameras, sound equipment, and computers cost less to achieve high production values. Film equipment companies face increasing competition, which has driven down the purchase price. Better equipment with significant technology improvements has reframed the indie film industry with high-level sound and image capture quality. The transition of cameras from film to digital was a notable shift for manufacturers. Many industry-insiders believe that digital is free, and film is expensive, but there is more the manufacturing construct. Digital cameras, when compared to film cameras in the same market price bracket, are much more expensive than analog counterparts. It is true that film costs money and is single-use. Digital memory cards are relatively expensive and can be reused. Film also needs to be developed and there is a cost associated with that production cost. There are other ways in which digital modalities save filmmakers. Automation Across all industries, efficiency always wins. Innovative manufacturers have developed machines to make numerous jobs easier for everyone. Machines have been assisting filmmakers since the invention of the camera. AI (artificial intelligence) is poised to change film even more and continues to augment human creativity. Storytellers work with computers during every process of creating a motion picture which has sped up the time it takes to complete each-step in film making. Automating pre-production processes, such as creating a budget and writing a script, is analogous to an ERP (enterprise resource planning) software for a traditional manufacturing operation. The Movie Magic budgeting software by Entertainment Partners has made creating a budget more efficient and accurate. Screenwriter programs vary from the downloadable Final Draft, and the purely cloud based, Celtx, are the reasons automated scriptwriting is the norm. These programs also automatically format writing to industry standards, facilitating the creative process. Automation in post-production is equally advanced through editing software for video, sound, effects, and colors all the way to distribution and promotional content. Editing footage from digital rather than film saves time and money. Industry favorites include Adobe Premiere Pro and Apple’s exclusive Final Cut Pro and are used on almost all well-known movies and TV shows. The impacts of COVID-19 on entertainment manufacturers Without question, the pandemic has affected every industry by creating an unanticipated production standstill. Entertainment manufacturers have sacrificed countless productions, lost billions of dollars, and major talent agencies have furloughed hundreds of employees. This negative impact is not just difficult for indie filmmakers, big studios are suffering just as much with production delays and cancellations still happening as this article goes to press. Any way back to the set is better than no set at all. A new necessity for productions to safely reopen includes epidemiologists and other public health specialists; they provide detailed strategies dealing with large crews who work in cramped spaces, makeup artists who get face-to-face with actors who kiss, hug, and fight on set. These COVID-19 consultants rely on the manufacturing industry for PPE supplies and carry out regular PCR tests. Face coverings and hand sanitizing stations have also become the norm, just like most other manufacturing operations.

Read More

How Smart Manufacturing Is Powered by Digital Twin Technology?

Article | December 8, 2021

A digital twin is a virtual model of an object or system that comprises its lifecycle. It is updated with real-time data and aids decision-making through simulation, machine learning, and reasoning for the production system. IoT sensor data from the original object is used to create a digital twin of the system. This cloud-connected data allows engineers to monitor systems and model system dynamics in real-time. Modifications can be tested on the digital twin before making changes to the original system. Considering that digital twins are supposed to replicate a product's complete lifecycle and are used throughout the production process, it's not unexpected that digital twins have become prevalent in all stages of manufacturing. “More than a blueprint or schematic, a digital twin combines a real-time simulation of system dynamics with a set of executive controls,” – Dr. Daniel Araya, consultant and advisor with a special interest in artificial intelligence, technology policy, and governance Companies will increasingly embrace digital twins to boost productivity and decrease expenses. As per recent research by Research and Markets, nearly 36% of executives across industries recognize the benefits of digital twinning, with half planning to implement it by 2028.So how does this digital twin technology benefit modern manufacturing? Let's have a look. How the Digital Twin Drives Smart Manufacturing Digital twins in manufacturing are used to replicate production systems. Manufacturers can develop virtual representations of real-world products, equipment, processes, or systems using data from sensors connected to machines, tools, and other devices. In manufacturing, such simulations assist in monitoring and adapting equipment performance in real-time. With machine learning techniques, digital twins can predict future events and anticipate potential difficulties. For maintenance, digital twins allow for quick detection of any problems. They collect real-time system data, prior failure data, and relevant maintenance data. The technique employs machine learning and artificial intelligence to predict maintenance requirements. Using this data, companies can avoid production downtime. Digital Twin and Artificial Intelligence (AI) in manufacturing Using digital twins and AI in production can enhance uptime by predicting potential failures and keeping equipment working smoothly. In addition, there are significant cost savings in the planning and design process as digital twins and AI can be used to replicate a specific scenario. Maintenance is another area that has seen significant progress with the use of digital twin manufacturing. A Digital Twin powered by AI can predict when a piece of equipment will fail, allowing you to arrange predictive maintenance that is not simply taking information from OEM manuals but can significantly cut maintenance expenses along with reducing downtime. Using the digital twin, it is feasible to train virtual workers in high-risk functions, similar to how pilots are trained using flight simulators. It also frees up highly skilled workers to upgrade the plant and streamline operations. General Electric Created the Most Advanced Digital Twin General Electric Company (GE) is a multinational business based in Boston that was founded in 1892. It has developed the world's most advanced digital twin, which blends analytic models for power plant components that monitor asset health, wear, and performance with KPIs (Key Performance Indicators) determined by the customer and the organization's objectives. The Digital Twin is powered by PredixTM, an industrial platform built to manage huge amounts of data and run analytic algorithms. General Electric Company provides extra "control knobs" or "dimensionality" that can be utilized to improve the operation of the system or asset modeled with GE Digital Twin. Final Words Given the numerous advantages of digital twin manufacturing, the potential for digital twins to be used in manufacturing is virtually endless in the near future. There will be a slew of new advancements in the field of digital twin manufacturing. As a result, digital twins are continually acquiring new skills and capabilities. The ultimate goal of all of these enhancements is to create the insights necessary to improve products and streamline processes in the future. FAQ What is a digital twin in manufacturing? The digital twins could be used to monitor and enhance a production line or perhaps the whole manufacturing process, from product design to production. How digital twin benefit manufacturers? Using digital twins to represent products and manufacturing processes, manufacturers can save assembly, installation, and validation time and costs. What is a digital thread? A digital twin is a realistic version of a product or system that replicates a company's equipment, controls, workflows, and systems. The digital thread, on the other hand, records a product's life cycle from creation to dissolution. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What is a digital twin in manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "The digital twins could be used to monitor and enhance a production line or perhaps the whole manufacturing process, from product design to production." } },{ "@type": "Question", "name": "How digital twin benefit manufacturers?", "acceptedAnswer": { "@type": "Answer", "text": "Using digital twins to represent products and manufacturing processes, manufacturers can save assembly, installation, and validation time and costs." } },{ "@type": "Question", "name": "What is a digital thread?", "acceptedAnswer": { "@type": "Answer", "text": "A digital twin is a realistic version of a product or system that replicates a company's equipment, controls, workflows, and systems. The digital thread, on the other hand, records a product's life cycle from creation to dissolution." } }] }

Read More

IoT in Manufacturing: How It's Changing the Way We Do Business

Article | December 10, 2021

IoT in the manufacturing industry introduces a superior technology that is coming up as a blessing for the industry. Manufacturers are enjoying one-of-a-kind benefits and returns on their reinvestments in IoT. Benefits such as enhanced productivity, work safety, reduced downtime, cost-effective operations, and more such benefits of IoT in manufacturing make it more and more popular with each passing day. The global IoT market is estimated to reach a value of USD 1,386.06 billion by 2026 from USD 761.4 billion in 2020 at a CAGR of 10.53 percent over the forecast period of 2021-2026. So the whole worldwide market of IoT has a bright future in the following years. “As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity.” – Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca Let’s check out below some exciting facts about IoT in manufacturing and see how IoT makes a difference in the manufacturing industry. IoT in Manufacturing: Some Interesting Facts According to PwC, 91% of industrial/manufacturing enterprises in Germany invest in "digital factories" that use IoT solutions. According to the International Federation of Robotics (IFR), China employs more industrial robots than any other country (many of which are connected to the internet in some way). According to IoT Analytics, the industrial sector spent more than $64 billion on IoT in 2018 and expects investment in Industry 4.0 to reach $310 billion by 2023. According to the Eclipse Foundation, most IoT developers are focused on developing smart agriculture systems (26%), while industrial automation is another big focus area (26%). However, home automation is dwindling in popularity, accounting for just 19% of projects. How Does IoT Work for the Manufacturing Industry? The Internet of Things (IoT) is a network of interconnected devices that communicate with one another and with other networks. While IoT-enabled devices are capable of various tasks, they are primarily employed to collect data and carry out specific tasks. The implementation of the Internet of Things in manufacturing is often referred to as the IIoT, or Industrial Internet of Things. IoT makes use of 'smart' devices to collect, process, and act on data. These intelligent devices are equipped with sensors and other software that enable them to communicate and exchange data inside the network. IoT-enabled equipment gives crucial real-time data that enables manufacturers or machine operators to make informed decisions. So, how does it function in practice? Sensors capture data from the system and transfer it to the cloud, where it can be analyzed. The data is transferred to the quality assurance system. The data that has been analyzed is forwarded to the end-user. How the IoT is Improving Manufacturing Business Operations The Internet of Things (IoT) has numerous benefits for the manufacturing industry. We'll go over some of the significant benefits that the Internet of Things brings to the manufacturing business. Energy Efficiency Solutions Energy is a high cost in manufacturing. Unfortunately, the current industrial energy infrastructure can only track excessive energy consumption. The utility bills include the factory's energy consumption records. But, unfortunately, nobody can break down energy consumption to the device level and find out the underperforming pieces. Some energy usage monitoring tools exist, but they only provide partial data, making system analysis difficult. IoT can help by giving device-level energy data. The sensors will detect any underperforming devices in the network and alert you so you can take action. As a result, the technology can help you reduce energy waste and find other ways to save it. Market Forecasting Data is required to determine trends and quality of production at a manufacturing facility. It also helps manufacturers plan and anticipates changes. These forecasts can help with inventory management, employment, cost control, and other operational procedures. Thus, IoT technology makes it easier to foresee and optimize customer requirements. Proactive Maintenance The Internet of Things (IoT) uses sensors to gather data about assets' health and productivity. In addition, it uses advanced analytics to give actionable information. These are presented on an appealing dashboard connected to your smart device. This allows for predictive maintenance to be used in the manufacturing industry. Superior Product Quality Every manufacturer is determined to produce a high-quality product at a low cost. Therefore, a minor quality modification can have a significant influence on the manufacturing firm. Customer happiness, waste reduction, sales, and profit can all benefit from high-quality products. But making high-quality products isn't easy. The Internet of Things (IoT) can assist you in this endeavor. Poorly set, calibrated, and maintained equipment are some of the main reasons for low-quality products. Worst of all, many small things sometimes go ignored as the final product seems perfect. Quality tests show the product is fine, but your consumers start having problems after a couple of months. Imagine the resources needed to identify and correct the problem. Sensors in an IoT network detect even minimal tweaks in setup and alert operators. The team might momentarily stop production to address the issue before the production cycle gets complete. Rapid and Informed Decision-Making The IoT can dramatically improve organizational decision-making. It unlocks vital data about network equipment performance and delivers it to the right person. Managers and field operators can use this data to improve plant processes and overall production. In addition to these significant benefits, IoT in manufacturing can help manufacturers improve their manufacturing operations and construct a unit that meets the vision of the smart factory of 2040. The future beyond IoT would be the icing on the cake for all of us, as technology has always amazed us. Imagine the day when IoT and AI merge, and the virtual gadgets controlled by IoT are the next major milestone. Then, the ideal combination of robotics, AI, and VR may reduce the manufacturing plant size and cost while increasing the output to a level that is unimaginable and unattainable as of now. Airbus Improved Production Efficiency with Its Factory of the Future Concept It's a massive task for a commercial airliner to be assembled. The expense of making a mistake throughout making such a craft can be significant, as there are millions of parts and thousands of assembly phases. Airbus has established a digital manufacturing effort called Factory of the Future to optimize operations and increase production capacity. The company has installed sensors on factory floor tools and machinery and supplied workers with wearable technologies, such as industrial smart glasses, to reduce errors and improve workplace safety. The wearable allowed for a 500% increase in efficiency while eliminating nearly all mistakes in one process named cabin seat marking. Final Words While the benefits of IoT devices have long been a topic of discussion among technology enthusiasts, the incorporation of IoT in manufacturing is creating a new buzz in the industry. The benefits of IoT in manufacturing, such as remote analysis of operations, processes, and products, are assisting manufacturers in establishing a more productive manufacturing unit. As a result of these benefits, IoT use in manufacturing is accelerating. Recognize the IoT's potential and take a step toward incorporating it into your manufacturing operation in 2022. FAQ What is the Industrial Internet of Things (IIoT)? IIoT stands for Industrial Internet of Things. It uses data to improve industrial efficiency. To enhance industrial performance, it uses embedded sensors, cloud data, and connected devices. Why is the IoT changing manufacturing? Real-time monitoring of machines and accurate reporting for better decisions are possible through IoT. This improves business strategies and project control. Thus, the Internet of Things has a significant impact on the profitability of any manufacturing company. How does the IoT transform the way we do business? We can use data collected by IoT devices to improve efficiency and help organizations make better decisions. They tell organizations the truth, not what they hope or believe. { "@context": "https://schema.org", "@type": "FAQPage", "mainEntity": [{ "@type": "Question", "name": "What is the Industrial Internet of Things (IIoT)?", "acceptedAnswer": { "@type": "Answer", "text": "IIoT stands for Industrial Internet of Things. It uses data to improve industrial efficiency. To enhance industrial performance, it uses embedded sensors, cloud data, and connected devices." } },{ "@type": "Question", "name": "Why is the IoT changing manufacturing?", "acceptedAnswer": { "@type": "Answer", "text": "Real-time monitoring of machines and accurate reporting for better decisions are possible through IoT. This improves business strategies and project control. Thus, the Internet of Things has a significant impact on the profitability of any manufacturing company." } },{ "@type": "Question", "name": "How does the IoT transform the way we do business?", "acceptedAnswer": { "@type": "Answer", "text": "We can use data collected by IoT devices to improve efficiency and help organizations make better decisions. They tell organizations the truth, not what they hope or believe." } }] }

Read More

Spotlight

Intcomex

Intcomex is a premiere value-added distributor of IT products focused solely on serving Latin America and the Caribbean. It distributes computer equipment, components, peripherals, software, computer systems, accessories, networking products and digital consumer electronics to more than 40,000 local customers in over 45 countries. It offers single source purchasing to its customers by providing an in-stock selection of more than 5,700 products from over 220 vendors, including many of the world's leading IT products manufacturers.

Events