Article | December 8, 2021
The manufacturing production schedule is a critical aspect that enables the manufacturing business to complete each production activity precisely and on time. Allocating different raw materials, resources, or processes to distinct project phases is called a production schedule. Its goal is to make your manufacturing process as efficient and cost-effective as possible in terms of resources and labor — all while delivering products on schedule.
As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity."
– Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca
So, how is the overall production schedule managed?
According to businesswire, the global APS (Advanced Production Planning and Scheduling) software market was valued at $1,491.22 million in 2020 and is anticipated to raise $2,941.27 million by 2028 expanding at an 8.86 percent CAGR from 2020 to 2028.
Some software and tools are available to assist manufacturing organizations in properly scheduling production planning, including MaxScheduler, TACTIC, MRPeasy, and Gantt charts. Though there are numerous software programs available on the market for production scheduling, the most crucial aspect is determining which elements to consider when planning production.
This blog will look at the five most important factors to consider while planning the production schedule.
Five Elements to Consider When Scheduling Production
As we saw in the introduction, production scheduling is used in the manufacturing process to assign plant and machinery resources, schedule human resources, plan production processes, and purchase materials.
So, what are the primary components or stages of this production scheduling process? Let's take a quick look at each of them.
Planning to Make the Best Use of the Company's Resources
The role of planning in production scheduling is to use the company's resources to maintain a regular production flow. As a result, downtime is decreased, and bottlenecks are minimized, allowing production to be optimized. For production scheduling, two forms of planning can be used:
Dynamic Planning: Dynamic planning is carried out under the idea that process stages will alter. So, materials must be ready, but production cannot begin until demand is decided.
Static Planning: Static planning is done keeping in mind that all process steps will be completed on schedule and without adjustments.
Routing to Determine the Order of Actions
A “bill of materials” is used in discrete manufacturing to specify what things are needed and in what quantities.
Routing determines the path and sequence of required phases of the process. It may involve in-house operations, but it may also comprise sub-contracted components that must be returned to the production flow for final assembly.
Scheduling to Make Use of Predetermined Planning Levels
To manufacture products from components or raw materials, scheduling makes use of the previously set planning level. As a result, it is time-dependent and must meet the demand outlined at the planning level.
Each department, product, and procedure can have their own unique set of timetables. Sub-schedules for sub-assemblies or mixes and blends may be defined by department-specific master production schedules, utilized at the highest level to define product timeframes.
Dispatching to Decide on Immediate Actions
Dispatching assigns the following jobs to be done from a subset of the production queue. Dispatching is utilized to make quick decisions. This is in contrast to planning, which involves the planning of future actions. Dispatching is utilized in both pull and push production systems.
Execution to Ensure that all Processes are Carried out Correctly
Production scheduling must rely on proper execution to ensure that all processes are completed appropriately and in the sequence planned.
It requires everyone to know what they are expected to do and when they are expected to do it. Execution requires knowledgeable management decisions, well-trained employees, correct data in the manufacturing plan and schedule, and consistent sales statistics and forecast numbers. All must be present for the organization to carry out its production plan and fulfill orders.
How MRPeasy – A Production Scheduling Software Assist Manufacturing Companies in Scheduling Their Production?
MRPeasy is a cloud-based material requirements planning (MRP) application explicitly designed for small manufacturing units. Its primary functions are purchase order management, forecasting, and inventory management.
This software simplifies the process of scheduling production. It enables you to evaluate all of your anticipated manufacturing orders (MO). The bill of materials (BOM), purchasing, and stocking are all maintained in one location, allowing you to quickly book inventory and increase purchase orders (PO) for acquired parts.
MRPeasy enables you to:
Obtain all of the detailed information on all of your MOs
Consider MOs as a single block or as distinct operations.
Drag-and-drop operations and operations to reschedule
Calendar or Gantt chart views are available for monitoring scheduled orders.
Additionally, you can manage MOs smoothly. With the production planning component, you may create, amend, and update MOs. This app compiles an exhaustive list of all your MOs. You can track their progress based on the status of an order or a part's availability. Additionally, you can search for, filter, and export your MOs.
Final Words
How to schedule production for your organization requires extensive research, planning, and analysis of overall product demand as well as a grasp of the time required to meet the demand. Production scheduling techniques such as job-based planning, batch method, flow method, and others help develop a productive manufacturing production schedule. Include the elements mentioned above in your manufacturing scheduling to get the best possible benefits, such as better production efficiency, lower production costs, and on-time product delivery for your manufacturing in 2022.
FAQ
How production planning differ from production scheduler?
Production planning and scheduling are often mixed. But there is a difference. Planning decides what and how much work must be done, whereas scheduling specifies who and when the work will be done.
What is real-time manufacturing scheduling?
Real-Time Scheduling is a production planning, scheduling, and tracking tool that enables manufacturing organizations to improve customer satisfaction and achieve optimal operational performance cost-effectively.
How can scheduling be improved?
Communication with staff is a great way to improve scheduling. This is true for all businesses, software or otherwise. However, management should not burden employees with ambiguous or unclear communication, and vice versa.
{
"@context": "https://schema.org",
"@type": "FAQPage",
"mainEntity": [{
"@type": "Question",
"name": "How production planning differ from production scheduler?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Production planning and scheduling are often mixed. But there is a difference. Planning decides what and how much work must be done, whereas scheduling specifies who and when the work will be done."
}
},{
"@type": "Question",
"name": "What is real-time manufacturing scheduling?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Real-Time Scheduling is a production planning, scheduling, and tracking tool that enables manufacturing organizations to improve customer satisfaction and achieve optimal operational performance cost-effectively."
}
},{
"@type": "Question",
"name": "How can scheduling be improved?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Communication with staff is a great way to improve scheduling. This is true for all businesses, software or otherwise. However, management should not burden employees with ambiguous or unclear communication, and vice versa."
}
}]
}
Read More
Article | April 1, 2022
Digital twin technology in the manufacturing industry is playing a vital role in evaluating current and future production line conditions to increase OEE, productivity, and business profitability. It has become the most critical component of industry 4.0 because it collects precise data about your manufacturing process and uses that data to help you make wiser decisions.
In other words, manufacturers can utilize digital twins to check and assess physical assets, processes, and systems in a virtual environment.
In this article, we will discuss some of the major applications of digital twin technology in the manufacturing industry. Additionally, we also have a look at how this technology helps businesses increase their ROI.
Digital Twin Technology Applications
Product Development
Product development is a long and intricate process. For example, it might take up to six years to develop and launch a new automobile model. The shift from the previous model to the new model must be seamless. A minor error during this process might have a detrimental effect on the brand's value and revenue. A digital twin software enables the integration of data between previous-generation models and the new concept's digital representations. Additionally, twinning facilitates communication between product designers, end users, and other stakeholders. When it comes to product testing, having digital twin platforms eliminates the need to wait for performance data from car trials to determine the product's performance and quality.
Design Customization
As consumers become more intelligent, and demand personalized items in a timely manner, the manufacturing industry will become increasingly competitive. According to an Industry Week Special Research Report on the future of manufacturing, industrial enterprises of all sizes place a premium on process improvement and customer relationship strengthening, while small businesses focus on addressing customer demand for product customization. To assist in the customization process, manufacturers use Twin Design Customization, which enables the virtual design and re-design of goods prior to generating a physical product that fully meets consumer specifications.
Shop Floor Performance Improvement
The shop-floor digital twin concept helps businesses to be proactive as the system is capable of identifying anomalous situations. This demands attention and process improvements prior to them escalating into a real problem or standstill.
Predictive Maintenance
Individual digital twin examples for equipment or manufacturing processes can detect deviations that indicate the need for preventative repairs or maintenance prior to the occurrence of a serious problem. Additionally, they can aid in the optimization of load levels, tool calibration, and cycle times.
Can Digital Twin Boost Business Revenue?
According to a recent study by Juniper Research, revenue from digital twins (a virtual representation of a connected physical product, process, or service throughout its lifecycle) will reach $13 billion by 2023. This is an increase from an estimated $9.8 billion in 2019, representing an average annual growth rate of 35%. The study also discovered that increased deployments of advanced sensors for data collection and technological advancements such as machine learning, artificial intelligence, and high-performance computing are enhancing the benefits of digital twins.
So, how does a digital twin help your company's ROI?
The digital twin improves transformation efficiency by providing platforms and technologies that simulate the impact of process changes in your supply chain – in a safe, secure, and digitally isolated environment – using real-time scenario modeling generated parallel with live supply chain operations. More than a visualization, a digital twin can help accelerate innovation, foster consensus, and save time and money by iteratively modeling changes, testing how components or systems operate, and inexpensively troubleshooting malfunctions in a virtual world.
Final Words
The digital twin platforms benefit manufacturing organizations across all verticals, including supply chain management, manufacturing operations, and logistics. Thus, technology is accelerating and enhancing the manufacturing industry to obtain more positive results and, in turn, increase its efficiency and, as a result, its return on investment. The digital twin will gain popularity as businesses learn to use it to their advantage. According to a 2020 analysis conducted by Research and Markets, up to 89% of all IoT platforms will incorporate digital twins by 2025. Thus, the future of digital twins is bright, and we may witness increased use of digital twins in the next few years.
FAQ
How digital twin help businesses?
Digital twins can help businesses make better data-driven decisions. Businesses utilize digital twins to understand the state of physical assets, respond to changes, optimize operations, and add value to systems.
How does digital twin save money?
A digital twin can save time and money by iteratively modeling modifications, testing component or system functionality, and resolving faults in virtual reality.
What are the essential components of digital twin technology?
The concept of the digital twin is composed of three unique components: the physical product, the digital or virtual product, and the linkages between the two.
Read More
Article | November 12, 2021
Robotics industry growth has accelerated rapidly across several industries. It has aided manufacturers in overcoming numerous barriers related to real-time communication, workplace safety, and overall manufacturing cost and timeliness. However, if we trace its history back to 1961 when George Charles Devol introduced the first robot, dubbed 'UNIMATE,' it has exponentially grown and utilized across sectors to make operations more effortless, precise, and faster.
“As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity.”
– Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca.
However, the industry has seen snags or difficult times due to market fluctuations, unfavorable situations, and the need to remain competitive in the drive for expansion. To thoroughly understand the robotics industry, let us examine each component that surrounds it.
Industrial Robotics Global Market Size
According to recent Allied Market Research studies, the global industrial robotics market was worth $37,875 million in 2016 and is expected to reach $70,715 million by 2023, rising at a 9.4% compound annual growth from 2017 to 2023.
Industrial Robotics Market Analysis
The global industrial robotics market is primarily driven by a global increase in labor costs, which has compelled firms to replace human labor with robots. As a result, Asia and Europe are the world's fastest-growing areas, with top companies such as ABB, Fanuc, KUKA, Kawasaki, and Yaskawa Electric Corporation headquartered in the region.
The global market of robotics has been segmented by its type, industry, and function.
Type
Industry
Function
Articulated
Automotive
Soldering and Welding
Cartesian
Electrical & Electronics
Materials Handling
SCARA
Healthcare & Medicine
Assembling & Disassembling
Cylindrical
Rubber & Plastics
Painting and Dispensing
Others if any
Machinery & Metals
Cutting and Processing
Food & Beverages
Milling
Precision & Optics
Others if any
Others if any
Industries That Are Pioneering the Use of Robotics
As we have observed, the global robotic market will continue to rise in the future years. Therefore, let us examine which industries will extend their use of robotics in their operations.
Healthcare & Medicine
Medical robots help surgeons optimize hospital logistics and free up the working staff to focus on patients. In the healthcare field, robots are revolutionizing surgery by speeding supply delivery and disinfection and freeing up time for doctors to interact with their patients.
da Vinci System – A General Surgical Robot
The da Vinci System is a surgical robot that focuses on a wide range of urological, bariatric, and gynecological surgical treatments. In addition, Stryker's MAKO System also specializes in orthopedic surgery, specifically partial and total knee replacements.
The da Vinci SP system is cleared for use in the United States exclusively for single-port urological procedures, lateral oropharyngectomy (often referred to as radical tonsillectomy), and tongue base excision.
Law Enforcement
Police robots are meant to gain access to areas inaccessible or dangerous to first responders, and they are capable of manipulating items and gathering data using several technologies. It encompasses robots capable of operating in various conditions and displaying a range of data and communication capabilities.
Agriculture & Food Industry
Farm equipment is now routinely equipped with sensors that utilize machine learning and robotics to identify weeds, compute the appropriate quantity of herbicide to spray, or learn to detect and pick strawberries, for instance.
Additionally, in the food business, robotics has been used to do repetitive tasks such as picking and placing food items and cutting and slicing food items during any given food item. For instance, the modern bakery business uses robotics to perform traditional craft skills and produce any product in large quantities while maintaining high quality and hygiene standards.
Transportation
The transportation sector is highly leveraging robotics. The powerful transport capability, advanced control technology, and sensing precision are some of the benefits that make the transportation robots widely utilized in this sector. These benefits from robotics help the sector convey various commodities in factories, restaurants, and medical institutions, among other locations.
Manufacturing
Robots are employed in manufacturing to do repeated jobs and streamline the overall assembly process. Additionally, robots and humans can also collaborate on product making. Robots can replace humans for hazardous tasks or processes that need large quantities of materials, which might be hazardous for a human employee to handle.
Factors Sustaining the Growth of the Robotics Industry
Reduces Manufacturing Costs: Robotics application in all industries reduces the overall manufacturing process running costs.
Improves Product Quality: The precision of robotics throughout the manufacturing process helps produce high-quality items that meet target client needs.
Offers Competitive Market: Increased income due to utilizing the benefits of robotics applications makes any industry more competitive.
Speed-ups Production Time: Robotics speeds up production and helps manufacturers increase output.
Offers Task or Process Flexibility: Robotics can weld, cast, mold, assemble, machine, transfer, inspect, load, and unload items, among other duties. So, it gives the manufacturer process flexibility.
Reduces Excessive Use and Waste of Production Materials: Robotics employs the exact quantity of material required for the manufactured product, reducing waste and overuse of materials.
Offers a Safe Working Place: Robotics improves employee health and safety by performing tasks that humans find risky. For example, in the chemical industry, a human employee may not do a hazardous task. In such instances, robots can replace people.
Final Words
The rise of the robotics industry has accelerated dramatically, and it is now spreading its wings across industries. Research firm IDC provided a projection for the commercial robot market, forecasting that the market will exceed $53 billion by 2022, with a compound annual growth rate of more than 20%. In addition, several advantages of robotics such as safety, productivity, uniformity, and perfection are pushing its expansion and making it an essential element of industry 4.0.
FAQs
Why are robots the future of the manufacturing industry?
The use of robots in manufacturing has improved process efficiency and product quality. As a result, robots are gaining favor in production and becoming the future of manufacturing.
Which industries make the most use of robotics?
Healthcare, agriculture, food, and manufacturing are the industries that are embracing robotics to get the most out of it.
How is manufacturing utilizing robotics?
Manufacturing uses robotics for repetitive tasks. This helps in the reduction of errors and human efforts. It also improves production efficiency.
{
"@context": "https://schema.org",
"@type": "FAQPage",
"mainEntity": [{
"@type": "Question",
"name": "Why are robots the future of the manufacturing industry?",
"acceptedAnswer": {
"@type": "Answer",
"text": "The use of robots in manufacturing has improved process efficiency and product quality. As a result, robots are gaining favor in production and becoming the future of manufacturing."
}
},{
"@type": "Question",
"name": "Which industries make the most use of robotics?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Healthcare, agriculture, food, and manufacturing are the industries that are embracing robotics to get the most out of it."
}
},{
"@type": "Question",
"name": "How is manufacturing utilizing robotics?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Manufacturing uses robotics for repetitive tasks. This helps in the reduction of errors and human efforts. It also improves production efficiency."
}
}]
}
Read More
Article | December 10, 2021
The benefits of contract manufacturing are triggering manufacturers to utilize it as a strategy to speed up production and increase revenue. According to BCC Research, the worldwide contract manufacturing industry should increase from $2.0 trillion in 2018 to $2.7 trillion in 2023, a 6.7% CAGR.
Given the growing demand, contract manufacturing has a long way to go in innovating new solutions for manufacturers.
As technology takes over and enhances many of the processes we used to handle with manual labor, we are freed up to use our minds creatively, which leads to bigger and better leaps in innovation and productivity.
– Matt Mong, VP Market Innovation and Project Business Evangelist at Adeaca
Let us look at the benefits and concept of contract manufacturing, often known as manufacturing partners in some circles.
Contract Manufacturing: Concept and Benefits
Concept
Contract manufacturing is a business model in which a company agreeswith a contract manufacturer to make components or finished goods based on the hiring company's design. In short, it is a business model in which one company hires another company to manufacture components or goods for them or their products.
Benefits
The following are some of the primary advantages of contract manufacturing that attract manufacturers to adopt this concept and find a trusted supplier to manufacture any product or part of their product without much difficulty.
Cost Efficiency: In contract manufacturing, companies do not have to pay for the facility, equipment, or labor needed.
Resource Allocations: The money and resources saved through contract manufacturing can be redirected towards other company operations.
Faster Lead Times: Hiring a contract manufacturer reduces manufacturing time. This improves market speed, delivery time, and customer service.
Quality Control: Contract manufacturers are likely to have their own quality control processes in place, which allow them to spot counterfeit or damaged products early on.
Advanced Skill Sets: Companies can benefit from the skills they may not possess, but the contract manufacturer does.
Contract Manufacturing Examples
Here are some examples of contract manufacturing companies that offer manufacturing services to other businesses and work on full-service outside manufacturing projects.
Example 1: Kimball Electronics Group
Kimball Electronics Group provides a comprehensive range of electronics manufacturing services, including engineering, prototyping, testing, electronic data interchange (EDI), new product introduction, and repair depot services. Soldering, assembly, reflow, de-paneling, flux application, inspection, screen printing, testing, and rework are all processes used in their manufacturing.
Example 2: Scapa Healthcare
Scapa Healthcare, headquartered in Knoxville, Tennessee, provides contract manufacturing services for medical and cosmetic products. Their portfolio of products includes sunscreen, silicone medical adhesives, and innovative materials. Additionally, the organization provides development, packaging, and logistics services.
Things to Consider While Selecting a Contract Manufacturing (CM) Partner
You need to know how to identify the ideal contract manufacturer for your business to accelerate production and produce high-quality items. Below, we've listed some of the most important things to keep in mind while looking for an outsourced manufacturing partner for your company.
Competency
Understanding a contract manufacturer's (CM) capabilities in terms of logistics and fulfillment is critical. Is your potential CM able to meet shifting product demands? How to use the CM's services? You may need one or more services from CM for your product, so always examine their capabilities or develop a list of their services and see which ones are valuable for you.
Knowledge or Prerequisite
A qualified, experienced, subject matter expert CM always correctly understands the requirements and delivers the services as per expectations and within the time frame specified in your production schedule. Always inquire about their qualifications or certificates in the places where your product will be manufactured.
Compliance
Any contract manufacturing plan must have an agreement or compliance clause. Always inquire about the compliance procedure and thoroughly understand the terms and claws to avoid future issues.
Workforces
Verify your possible contract manufacturer's personnel count. Is it easy to talk to them? Is labor skilled enough to meet the product's goals? It is critical for large-scale production and production, requiring swift responses. Any work force shortage might cause production delays.
Gear & Expertise
Check for machines and equipment as well as human labor in your possible CM. Many CM lease equipment to complete a project. So always check how the CM will organize the essential equipment for your project. Expertise in using the equipment is also necessary. Verify which machines were used and whether or not professionals were involved.
Whereabouts
The CM's location is the main factor to check. Because the CM may have numerous plants, knowing which plant is assigned to your product is essential to knowing every aspect of its production. Also, the assembly location must allow you to visit and inspect the manufacturing between cycles.
Business Stability
Finding a reliable contract manufacturer with solid financial backing and market roots is essential to avoid market scams. However, you must also analyze and solve risk factors like equipment failure, supplier capacity, and unreasonable expectations.
Selection Myths of Contract Manufacturing Partner
Once you've produced a list of shortlisted contract manufacturing partners who meet all of the criteria described in the preceding heading, you can proceed by following the steps below to select the best contract manufacturing partner.
Look for Who is Willing to Invest in Your Business
Incorrect. The objective is to find a vendor prepared to manufacture at a loss. A contract manufacturer's strength is that they can stay competitive and make a profit for both parties.
Focus on Tier 1 CM Partners from the Market
This one is indeed not acceptable. Tier 1 is a financial phrase used to separate large corporations from smaller ones. You want a contract manufacturer who understands your business and your needs. Don't worry about the manufacturing partner's size.
Go Ahead with the One Who Offers the Best Services at the Lowest Price
Trying to get the cheapest quote isn't always the best idea. You should get a quote from your contract manufacturing partner, but the quote may not always reveal the complete story. Cost per unit frequently captures approximately 75% of total supply chain cost. Some contract manufacturers charge the OEM the remaining 25%. Consider the complete picture while selecting a CM partner.
Final Words
Manufacturers use contract manufacturing to meet their commercial goals. Therefore, contract manufacturing is a win-win situation for both industrialists and contract manufacturers. Finding the proper contract manufacturing partner for your company is not straightforward, but our brief guide can help you identify the right manufacturing partner.
FAQ
What makes a good contract manufacturer?
The most significant contract manufacturing firms are more than just supply chain partners. They recognize and treat your items as if they were their own, are meticulous in their operations, and are concerned with quality and capital.
What differentiates contract manufacturing from outsourcing?
A contract is a legally binding arrangement. It involves two or more parties. For example, outsourcing is outsourcing some tasks to an outside organization under a contract agreed upon by both parties.
What's the difference between contract manufacturing and licensing?
Contract manufacturing only outsources production phases, while licensing is far more complex. In return for fees, a corporation sells the right to utilize its intellectual property to another company. Licenses are like franchises.
{
"@context": "https://schema.org",
"@type": "FAQPage",
"mainEntity": [{
"@type": "Question",
"name": "What makes a good contract manufacturer?",
"acceptedAnswer": {
"@type": "Answer",
"text": "The most significant contract manufacturing firms are more than just supply chain partners. They recognize and treat your items as if they were their own, are meticulous in their operations, and are concerned with quality and capital."
}
},{
"@type": "Question",
"name": "What differentiates contract manufacturing from outsourcing?",
"acceptedAnswer": {
"@type": "Answer",
"text": "A contract is a legally binding arrangement. It involves two or more parties. For example, outsourcing is outsourcing some tasks to an outside organization under a contract agreed upon by both parties."
}
},{
"@type": "Question",
"name": "What's the difference between contract manufacturing and licensing?",
"acceptedAnswer": {
"@type": "Answer",
"text": "Contract manufacturing only outsources production phases, while licensing is far more complex. In return for fees, a corporation sells the right to utilize its intellectual property to another company. Licenses are like franchises."
}
}]
}
Read More